精英家教网 > 高中数学 > 题目详情
(2013•海淀区一模)设l1,l2,l3为空间中三条互相平行且两两间的距离分别为4,5,6的直线.给出下列三个结论:
①?Ai∈li(i=1,2,3),使得△A1A2A3是直角三角形;
②①?Ai∈li(i=1,2,3),使得△A1A2A3是等边三角形;
③三条直线上存在四点Ai(i=1,2,3,4),使得四面体A1A2A3A4为在一个顶点处的三条棱两两互相垂直的四面体.
其中,所有正确结论的序号是(  )
分析:本题利用画图结合运动变化的思想进行分析.我们不妨先将 A、B、C 按如图所示放置,容易看出此时 BC<AB=AC.
现在,我们将 A 和 B 往上移,并且总保持 AB=AC(这是可以做到的,只要 A、B 的速度满足一定关系),而当A、B 移得很高很高时,就得到①和②都是正确的.至于③,结合条件利用反证法的思想方法进行说明即可.
解答:解:我们不妨先将 A、B、C 按如图所示放置.

容易看出此时 BC<AB=AC.
现在,我们将 A 和 B 往上移,并且总保持 AB=AC(这是可以做到的,只要 A、B 的速度满足一定关系),而当A、B 移得很高很高时,不难想象△ABC 将会变得很扁,也就是会变成顶角 A“非常钝”的一个等腰钝角三角形.于是,在移动过程中,总有一刻,使△ABC 成为等边三角形,亦总有另一刻,使△ABC 成为直角三角形(而且还是等腰的).
这样,就得到①和②都是正确的.
至于③,如图所示.

为方便书写,称三条两两垂直的棱所共的顶点为?.
假设 A 是?,那么由 AD⊥AB,AD⊥AC 知 L3⊥△ABC,从而△ABC 三边的长就是三条直线的距离 4、5、6,这就与 AB⊥AC 矛盾.同理可知 D 是?时也矛盾;
假设 C 是?,那么由 BC⊥CA,BC⊥CD 知 BC⊥△CAD,而 l1∥△CAD,故 BC⊥l1,从而 BC 为 l1与 l2 的距离,于是 EF∥BC,EF=BC,这样就得到 EF⊥FG,矛盾.同理可知 B 是?时也矛盾.
综上,不存在四点Ai(i=1,2,3,4),使得四面体A1A2A3A4为在一个顶点处的三条棱两两互相垂直的四面体.
故选B.
点评:本小题主要考查命题的真假判断与应用,考查空间想象能力、化归与转化思想.属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•海淀区一模)已知a>0,下列函数中,在区间(0,a)上一定是减函数的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区一模)在四棱锥P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=AB=4,∠CDA=120°,点N在线段PB上,且PN=
2

(Ⅰ)求证:BD⊥PC;
(Ⅱ)求证:MN∥平面PDC;
(Ⅲ)求二面角A-PC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区一模)在四棱锥P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又∠CAD=30°,PA=AB=4,点N在线段PB上,且
PN
NB
=
1
3

(Ⅰ)求证:BD⊥PC;
(Ⅱ)求证:MN∥平面PDC;
(Ⅲ)设平面PAB∩平面PCD=l,试问直线l是否与直线CD平行,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区一模)函数f(x)=
13
x3-kx,其中实数k为常数.
(I) 当k=4时,求函数的单调区间;
(II) 若曲线y=f(x)与直线y=k只有一个交点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区一模)已知圆M:(x-
2
2+y2=
7
3
,若椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的右顶点为圆M的圆心,离心率为
2
2

(I)求椭圆C的方程;
(II)已知直线l:y=kx,若直线l与椭圆C分别交于A,B两点,与圆M分别交于G,H两点(其中点G在线段AB上),且|AG|=|BH|,求k的值.

查看答案和解析>>

同步练习册答案