精英家教网 > 高中数学 > 题目详情

设函数f(x)=2x3+3ax2+3bx+8cx=1及x=2时取得极值.

(1)求ab的值;

(2)若对任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围.

解析 (1)f′(x)=6x2+6ax+3b

因为函数f(x)在x=1及x=2时取得极值,

则有f′(1)=0,f′(2)=0.

解得a=-3,b=4.

(2)由(1)可知,f(x)=2x3-9x2+12x+8c

f′(x)=6x2-18x+12=6(x-1)(x-2).

x∈(0,1)时,f′(x)>0;当x∈(1,2)时,f′(x)<0;

x∈(2,3)时,f′(x)>0.

所以,当x=1时,f(x)取得极大值f(1)=5+8c.

f(0)=8cf(3)=9+8c

则当x∈[0,3]时,f(x)的最大值为f(3)=9+8c.

因为对于任意的x∈[0,3],有f(x)<c2恒成立,

所以9+8c<c2,解得c<-1或c>9.

因此c的取值范围为(-∞,-1)∪(9,+∞).

练习册系列答案
相关习题

科目:高中数学 来源:黑龙江大庆实验中学2008-2009学年上学期高一期中考试(数学) 题型:013

设函数f(x)=2x+3,若g(x+2)=f(x),则有

[  ]

A.g(x)=2x+1

B.g(x)=2x-1

C.g(x)=2x-3

D.g(x)=2x+7

查看答案和解析>>

科目:高中数学 来源:2009届宁夏银川一中高三年级第二次月考、数学试卷(理科) 题型:044

设函数f(x)=|2x+1|-|x-4|.

(1)解不等式f(x)>2;

(2)求函数y=f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2x+3,g(x+2)=f(x),则g(x)的表达式是(     ).

A.2x+1                     B.2x-1                     C.2x-3                    D.2x+7

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2x-1(x<0),则f(x)                      (  )

A.有最大值                        B.有最小值

C.是增函数                        D.是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2xa·2x-1(a为实数).若a<0,用函数单调性定义证明:yf(x)在(-∞,+∞)上是增函数.

查看答案和解析>>

同步练习册答案