精英家教网 > 高中数学 > 题目详情
17.已知复数z满足z•(1+i2015)=i2016(i是虚数单位),则复数z在复平面内所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用复数单位的幂运算,然后利用复数的乘法的运算法则化简求解即可.

解答 解:复数z满足z•(1+i2015)=i2016
可得z(1-i)=1,可得z=$\frac{1}{1-i}$=$\frac{1+i}{(1-i)(1+i)}$=$\frac{1}{2}+\frac{1}{2}i$.
对应点的坐标($\frac{1}{2},\frac{1}{2}$).
故选:A.

点评 本题考查复数的代数形式的混合运算,复数的几何意义,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点分别为F1,F2,Q为右支上一点,P点在直线x=-a上,且满足$\overrightarrow{PQ}$=$\overrightarrow{Q{F}_{2}}$,$\overrightarrow{OQ}$=λ($\frac{\overrightarrow{O{F}_{2}}}{|\overrightarrow{O{F}_{2}}|}$+$\frac{\overrightarrow{OP}}{|\overrightarrow{OP}|}$)(λ≠0),则该双曲线的离心率为(  )
A.$\sqrt{5}$+1B.$\sqrt{2}$+1C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.logcotθ$\frac{sinθ+sin2θ}{1+cosθ+cos2θ}$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆Γ:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),过原点的两条直线l1和l2分别与C交于点A、B和C、D,得到平行四边形ACBD.
(1)若a=4,b=3,且ACBD为正方形时,求该正方形的面积S;
(2)若直线l1的方程为bx-ay=0,l1和l2关于y轴对称,Γ上任意一点P到l1和l2的距离分别为d1和d2,证明:d12+d22=$\frac{2{a}^{2}{b}^{2}}{{a}^{2}+{b}^{2}}$;
(3)当ACBD为菱形,且圆x2+y2=1内切于菱形ACBD时,求a,b满足的关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知二次函数f(x)=ax2+bx+c(a,b,c∈R).
(1)若对任意实数x,不等式2x≤f(x)≤$\frac{1}{2}$(x+1)2恒成立,求f(-1)的取值范围;
(2)当a=1时,对任意x1,x2∈[-1,1],恒有|f(x1)-f(x2)|≤4,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=asinx-bcosx(a、b为常数,a≠0,x∈R)在x=$\frac{π}{4}$处取得最小值,则函数y=|f($\frac{3π}{4}$-x)|是(  )
A.最大值为$\sqrt{2}$b且它的图象关于点(π,0)对称
B.最大值为$\sqrt{2}$a且它的图象关于点($\frac{3π}{4}$,0)对称
C.最大值为$\sqrt{2}$b且它的图象关于直线x=π对称
D.最大值为$\sqrt{2}$a且它的图象关于直线x=$\frac{3π}{4}$对称.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=loga(7-x),g(x)=loga(2x+1)(a>0且a≠1)
(1)若f(3)=2,求a的值;
(2)求函数F(x)=f(x)+g(x)的单调递增区间;
(3)若对任意的x∈[a,a+1],存在x0∈[1,5],使不等式f(x0)>g(x)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=sin2x-cos2x的一个单调递增区间是(  )
A.$[-\frac{3π}{4},\frac{π}{4}]$B.$[-\frac{π}{4},\frac{3π}{4}]$C.$[-\frac{3π}{8},\frac{π}{8}]$D.$[-\frac{π}{8},\frac{3π}{8}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知0<α<π,-sinα=2cosα,则2sin2α-sinαcosα+cos2α的值为(  )
A.-$\frac{7}{5}$B.-$\frac{11}{5}$C.$\frac{11}{5}$D.$\frac{7}{5}$

查看答案和解析>>

同步练习册答案