精英家教网 > 高中数学 > 题目详情
已知中心在原点,焦点在轴上的椭圆的离心率为,椭圆上异于长轴顶点的任意点与左右两焦点构成的三角形中面积的最大值为.
(1)求椭圆的标准方程;
(2)已知点,连接与椭圆的另一交点记为,若与椭圆相切时不重合,连接与椭圆的另一交点记为,求的取值范围.
(1);(2).

试题分析:(1)先利用已知条件列举出有关的方程组,结合三者之间满足的勾股关系求出的值,从而确定椭圆的方程;(2)设直线的方程分别为以及,将两条直线方程与椭圆方程联立,结合韦达定理得到点与点之间的关系(关于轴对称),从而得到两点坐标之间的关系,最后将利用点的坐标进行表示,注意到坐标的取值范围,然后利用二次函数求出的取值范围.
(1)由题可知:
解得:
故椭圆的方程为:
(2)不妨设
由题意可知直线的斜率是存在的,故设直线的斜率为,直线的斜率为
的方程为: 代入椭圆方程,得

代入解得:
的方程为:代入椭圆方程,得

,代入解得:
,又不重合,


.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知二次函数f(x)=ax2+bx+c (a≠0)且满足f(-1)=0,对任意实数x,恒有f(x)-x≥0,并且当x∈(0,2)时,f(x)≤.
(1)求f(1)的值;
(2)证明:a>0,c>0;
(3)当x∈[-1,1]时,函数g(x)=f(x)-mx (x∈R)是单调函数,求证:m≤0或m≥1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数是偶函数。
(1)求的值;
(2)设函数,其中实数。若函数的图象有且只有一个交点,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设定义域为R+的函数f(x),对任意的正实数x,y,都有f(xy)=f(x)+f(y),且当x>1时有f(x)>0.
①求f(1)的值;
②判断f(x)在(0,+∞)上的单调性,并证明.
③若f(
1
a
)=-1,求满足不等式f(1-x-2x2)≤1的x的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知二次函数的顶点坐标为,且的两个实根之差等于__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数f(x)=x2-ax-a在区间[0,2]上的最大值为1,则实数a等于(  )
A.-1B.1C.2D.-2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,已知二次函数y=ax2+bx+c(a,b,c为实数,a≠0)的图像过点C(t,2),且与x轴交于A,B两点,若AC⊥BC,则实数a的值为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数对任意的满足,且当时,.若有4个零点,则实数的取值范围是   

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=2mx2-2(4-m)x+1,g(x)=mx,若对于任一实数x,f(x)与g(x)至少有一个为正数,则实数m的取值范围是(  )
A.(0,2)B.(0,8)C.(2,8)D.(-∞,0)

查看答案和解析>>

同步练习册答案