精英家教网 > 高中数学 > 题目详情
如图是校园“十佳歌手”大奖赛上,七位评委为甲、乙两位选手打出的分数的茎叶图.
(1)写出评委为乙选手打出分数数据的众数,中位数;
(2)求去掉一个最高分和一个最低分后,两位选手所剩数据的平均数和方差,根据结果比较,哪位选手的数据波动小?
考点:极差、方差与标准差,茎叶图,众数、中位数、平均数
专题:计算题,概率与统计
分析:(1)由茎叶图可知由茎叶图可知,乙选手得分为79,84,84,84,86,87,93,即可写出评委为乙选手打出分数数据的众数,中位数;
(2)求出甲、乙两位选手,去掉最高分和最低分的平均数与方差,即可得出结论.
解答: 解:(1)由茎叶图可知,乙选手得分为79,84,84,84,86,87,93,
所以众数为84,中位数为84;
(2)甲选手评委打出的最低分为84,最高分为93,去掉最高分和最低分,其余得分为86,86,87,89,92,
故平均分为(86+86+87+89+92)÷5=88,S2=5.2;
乙选手评委打出的最低分为79,最高分为93,去掉最高分和最低分,其余得分为84,84,84,86,87,
故平均分为(84+84+86+84+87)÷5=85,S2=1.6,
∴乙选手的数据波动小.
点评:本题考查茎叶图,考查一组数据的平均数与方差,考查处理一组数据的方法,是一个基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=loga(x2-4x+8),x∈[0,2]的最大值为-2,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)为定义在R上的奇函数,当x>0时,f(x)=xlnx,则不等式f(x)<-e的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3sin(ωx+
π
6
)(ω>0),在区间[0,2]上存在唯一x1使f(x1)=3,存在唯一x2使f(x2)=-3,则ω的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

要得到y=2sin(2x+
π
6
)的图象,只需将y=2sinx的图象上的所有的点(  )
A、向左平移
π
6
个单位长度,再横坐标缩短到原来的
1
2
倍(纵坐标不变)
B、向右平移
π
6
个单位长度,再横坐标缩短到原来的
1
2
倍(纵坐标不变)
C、横坐标缩短到原来的
1
2
倍(纵坐标不变),向左平移
π
6
个单位长度
D、横坐标缩短到原来的
1
2
倍(纵坐标不变),向右平移
π
6
个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

阅读如图所示的伪代码:若输入x的值为12,则p=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于实数x,符号[x]不超过x的最大整数,例如[π]=3,[-3.5]=-4,定义函数f(x)=x-[x],则下列结论正确的是(  )
A、方程f(x)=k(k∈R)有且仅有一个解
B、函数f(x)的最大值为1
C、函数f(x)是增函数
D、函数f(x)的最小值为0

查看答案和解析>>

科目:高中数学 来源: 题型:

某天甲、乙两同学约好在晚上8点到9点之间在某地会面,假定两人到达指定地点的时刻是等可能的且相互独立的,并约定先到者等待后到者时间是15分钟,之后就可以离去,问两人能够见面的概率有多大?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在平面直角坐标系中,圆C:(x-a)2+(y-b)2=10(a>b>0)在直线x+2y=0上截得的弦长为2
5

(1)求a,b满足的关系;
(2)当a2+b2取得最小值时,求圆C的方程.

查看答案和解析>>

同步练习册答案