精英家教网 > 高中数学 > 题目详情

【题目】下列函数既是奇函数又在(0,+∞)上单调递减的是( )
A.f(x)=x4
B.
C.
D.f(x)=x3

【答案】C
【解析】解:函数f(x)=x4是偶函数,不满足条件;

函数 是奇函数,在(0,1]上单调递减,在[1,+∞)上单调递增;不满足条件;

函数 定义域为R,

且f(﹣x)+f(x)= + =lg1=0,即f(﹣x)=﹣f(x),即f(x)是奇函数,

在(0,+∞)上t= 是减函数,故f(x)在(0,+∞)上单调递减,满足条件;

函数f(x)=x3是奇函数,在(0,+∞)上单调递增,不满足条件;

所以答案是:C

【考点精析】掌握函数单调性的判断方法和复合函数单调性的判断方法是解答本题的根本,需要知道单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较;复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 .
(1)若 ,求函数 的极值;
(2)设函数 ,求函数 的单调区间;
(3)若在区间 上不存在 ,使得 成立,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log2(3+x)﹣log2(3﹣x),
(1)求函数f(x)的定义域,并判断函数f(x)的奇偶性;
(2)已知f(sinα)=1,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点D是椭圆C: =1(a>b>0)上一点,F1 , F2分别为C的左、右焦点,|F1F2|=2 ,∠F1DF2=60°,△F1DF2的面积为
(1)求椭圆C的方程;
(2)过点Q(1,0)的直线l与椭圆C相交于A,B两点,点P(4,3),记直线PA,PB的斜率分别为k1 , k2 , 当k1k2最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,圆锥SO的底面圆半径|OA|=1,其侧面展开图是一个圆心角为 的扇形.

(1)求此圆锥的表面积;
(2)求此圆锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在等差数列{an}中,Sn为其前n项和,a2=2,S5=15;等比数列{bn}的前n项和
( I)求数列{an},{bn}的通项公式;
( II)设cn=anbn , 求数列{cn}的前n项和Cn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年射阳县洋马镇政府决定投资8千万元启动“鹤乡菊海”观光旅游及菊花产业项目.规划从2017年起,在相当长的年份里,每年继续投资2千万元用于此项目.2016年该项目的净收入为5百万元(含旅游净收入与菊花产业净收入),并预测在相当长的年份里,每年的净收入均为上一年的1.5倍.记2016年为第1年,f(n)为第1年至此后第n(n∈N*)年的累计利润(注:含第n年,累计利润=累计净收入﹣累计投入,单位:千万元),且当f(n)为正值时,认为该项目赢利.
(1)试求f(n)的表达式;
(2)根据预测,该项目将从哪一年开始并持续赢利?请说明理由.
(参考数据: ,ln2≈0.7,ln3≈1.1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC所在的平面内,点P0、P满足 = ,且对于任意实数λ,恒有 ,则(
A.∠ABC=90°
B.∠BAC=90°
C.AC=BC
D.AB=AC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=ex(ex﹣ax﹣1)且f(x)≥0恒成立.
(1)求实数a的值;
(2)证明:f(x)存在唯一的极大值点x0 , 且

查看答案和解析>>

同步练习册答案