精英家教网 > 高中数学 > 题目详情

【题目】已知的直角顶点轴上,点为斜边的中点,且平行于轴.

(Ⅰ)求点的轨迹方程;

(Ⅱ)设点的轨迹为曲线,直线的另一个交点为.以为直径的圆交轴于即此圆的圆心为,的最大值.

【答案】(1)(2)

【解析】试题分析:(1)设的中点的坐标为,根据,;(2)(2)讨论BC的斜率,求出圆P的半径和横坐标,计算最小值,进而得到的最大值.

详解:

设点的坐标为(,则的中点的坐标为,点的坐标为

,得

经检验,当点运动至原点时,重合,不合题意舍去.

所以,轨迹的方程为.

(Ⅱ)依题意,可知直线不与轴重合,设直线的方程为,点的坐标分别为(,圆心的坐标为.

可得

的半径

.

过圆心于点,则.

中,即垂直于轴时,取得最小值为取得最大值为

所以,的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给出下列命题:

①函数是奇函数;

②将函数的图像向左平移个单位长度,得到函数的图像;

③若是第一象限角且,则

是函数的图像的一条对称轴;

⑤函数的图像关于点中心对称。

其中,正确的命题序号是______________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数,有下列结论:

的定义域为(-1, 1); 的值域为(, );

的图象关于原点成中心对称; 在其定义域上是减函数;

⑤对的定义城中任意都有.

其中正确的结论序号为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥中,,底面是菱形,且,过点作直线为直线上一动点.

(1)求证:

(2)当面时,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p;命题q:方程表示双曲线.

⑴若命题p为真命题,求实数m的取值范围;

⑵若命题为真命题,为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某公园有三条观光大道围成直角三角形,其中直角边,斜边.现有甲、乙、丙三位小朋友分别在大道上嬉戏,所在位置分别记为点

(1)若甲乙都以每分钟的速度从点出发在各自的大道上奔走,到大道的另一端

时即停,乙比甲迟2分钟出发,当乙出发1分钟后,求此时甲乙两人之间的距离;

(2)设,乙丙之间的距离是甲乙之间距离的2倍,且,请将甲

乙之间的距离表示为θ的函数,并求甲乙之间的最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P-ABC中,PA⊥底面ABC .点DEN分别为棱PA,PCBC的中点,M是线段AD的中点,PA=AC=4,AB=2.

(Ⅰ)求证:MN∥平面BDE

(Ⅱ)求二面角C-EM-N的正弦值;

(Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线过点,其参数方程为为参数, ),以为极点, 轴非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)求已知曲线和曲线交于两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=|xa|+2a,且不等式fx)≤4的解集为{x|1x3}

1)求实数a的值.

2)若存在实数x0,使fx0)≤5m2+mf(﹣x0)成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案