精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥P﹣ABCD中,底面ABCD是菱形, ,PA=PD,F为AD的中点,PD⊥BF.
(1)求证:AD⊥PB;
(2)若菱形ABCD的边长为6,PA=5,求四面体PBCD的体积.

【答案】
(1)证明:连接PF,

∵PA=PD,F为AD的中点,

∴PF⊥AD,

∵底面ABCD是菱形,

∴△ABD是等边三角形,∵F为AD的中点,

∴BF⊥AD,

又PF,BF平面PBF,PF∩BF=F,

∴AD⊥平面PBF,∵PB平面PBF,

∴AD⊥PB


(2)解:由(1)得BF⊥AD,又∵PD⊥BF,AD,PD平面PAD,

∴BF⊥平面PAD,又BF平面ABCD,

∴平面PAD⊥平面ABCD,

由(1)得PF⊥AD,平面PAD∩平面ABCD=AD,

∴PF⊥平面ABCD,

在直角△PAF中,PA=5,AF= AD=3,∠PFA=90°,∴PF=4,

∴四面体PBCD的体积


【解析】(1)连接PF,由三线合一可得AD⊥BF,AD⊥PF,故而AD⊥平面PBF,于是AD⊥PB;(2)证明PF⊥平面ABCD,计算PF,代入体积公式计算.
【考点精析】本题主要考查了空间中直线与直线之间的位置关系的相关知识点,需要掌握相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,将边长为2的正方形ABCD沿对角线BD折叠,使得平面ABD丄平面CBD,若AM丄平面ABD,且AM=
(1)求证:DM⊥平面ABC;
(2)求二面角C﹣BM﹣D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos2x,二次函数g(x)满足g(0)=4,且对任意的x∈R,不等式﹣3x2﹣2x+3≤g(x)≤4x+6成立,则函数f(x)+g(x)的最大值为(
A.5
B.6
C.4
D.7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知菱形ABEF所在的平面与△ABC所在的平面相互垂直,AB=4,BC= ,BC⊥BE,∠ABE=

(1)求证:BC⊥平面ABEF;
(2)求平面ACF与平面BCE所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读下面材料:在计算时,我们发现,从第一个数开始,后面每个数与它的前面个数的差都是一个相等的常数,具有这种规律的一列数,除了直接相加外,我们还可以用下面的公式来计算它们的和(其中:表示数的个数,表示第一个数,表示最后一个数)),那么,利用或不利用上面的知识解答下面的问题:某集团总公司决定将下属的一个分公司对外招商承包,有符合条件的两家企业AB分别拟定上缴利润,方案如下:A:每年结算一次上缴利润,第一年上缴利润100万元,以后每年比前一年增加100万元;B:每半年结算一次上缴利润,第一个半年上缴利润30万元,以后每半年比前半年增加30万元;

1)如果承包4年,你认为应该承包给哪家企业,总公司获利多?

2)如果承包年,请用含的代数式分别表示两家企业上缴利润的总金额,请问总公司应该如何在承包企业AB中选择?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合,且.

1)证明:若,则是偶数;

2)设,且,求实数的值;

3)设,求证:;并求满足的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】点P在双曲线 (a>0,b>0)的右支上,其左、右焦点分别为F1、F2 , 直线PF1与以坐标原点O为圆心、a为半径的圆相切于点A,线段PF1的垂直平分线恰好过点F2 , 则该双曲线的渐近线的斜率为(
A.±
B.±
C.±
D.±

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知D= ,给出下列四个命题:
P1(x,y)∈D,x+y+1≥0;
P2(x,y)∈D,2x﹣y+2≤0;
P3(x,y)∈D, ≤﹣4;
P4(x,y)∈D,x2+y2≤2.
其中真命题的是( )
A.P1 , P2
B.P2 , P3
C.P2 , P4
D.P3 , P4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图O是等腰三角形ABC内一点,圆O与△ABC的底边BC交于M,N两点,与底边上的高交于点G,且与AB,AC分别相切于E,F两点.

(1)(I)证明EF//BC
(2)(II)若AG等于圆O半径,且AE=MN=2,求四边形EBCF的面积

查看答案和解析>>

同步练习册答案