精英家教网 > 高中数学 > 题目详情
已知向量
m
=(x2,1)
n
=(a,1-2ax)
,其中a>0.函数g(x)=
m
n
在区间x∈[2,3]上有最大值为4,设f(x)=
g(x)
x

(1)求实数a的值;
(2)若不等式f(3x)-k3x≥0在x∈[-1,1]上恒成立,求实数k的取值范围.
分析:(1)由向量的数量积求出函数g(x)的解析式,由函数的单调性求出函数的最大值,由最大值等于4求得a的值;
(2)求出函数f(x)=
g(x)
x
的解析式,代入f(3x)-k3x≥0后分离参数k,然后利用配方法求得函数的最值后得答案.
解答:解:(1)由题得g(x)=
m
n
=ax2+1-2ax=a(x-1)2+1-a,
当a>0时函数开口向上,对称轴为x=1,在区间x∈[2,3]单调递增,最大值为4,
∴g(x)max=g(3)=a(3-1)2+1-a=4,
∴a=1;                                  
(2)由(1)可知,g(x)=x2-2x+1,
∴f(x)=
g(x)
x
=x+
1
x
-2

令t=3x,则t∈[
1
3
,3],
∴f(3x)-k3x≥0可化为f(t)≥kt,
即k
f(t)
t
恒成立,
f(t)
t
=(
1
t
-1)2
,且
1
t
∈[
1
3
,3]

1
t
=1,即t=1时
f(t)
t
取最小值为0,
∴k≤0.
点评:本题考查了函数恒成立问题,考查了函数构造法、换元法及分离变量法,训练了利用配方法求函数的最值,属中高档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
m
=(x2,y-cx)
n
=(1,x+b)
m
n
,(x,y,b,c∈R),且把其中x,y所满足的关系式记为y=f(x),若f′(x)为f(x)的导函数,F(x)=f(x)+af′(x)(a>0),且F(x)是R上的奇函数.
(Ⅰ)求
b
a
和c的值;
(Ⅱ)若函数f(x)在[
a
2
a2]
上单调递减,求b的取值范围;
(Ⅲ)当a=2时,设0<t<4且t≠2,曲线y=f(x)在点A(t,f(t))处的切线与曲线y=f(x)相交于点B(m,f(m))(A,B不重合),直线x=t与y=f(m)相交于点C,△ABC的面积为S,试用t表示△ABC的面积S(t),若P为S(t)上一动点,D(4,0),求直线PD的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(1,1),向量
n
与向量
m
夹角为
4
,且
m
n
=-1.
(Ⅰ)求向量
n

(Ⅱ)设向量
a
=(1,0)向量
b
=(cosx,2cos2
π
3
-
x
2
)),其中0<x<
3
,若
a
n
,试求|
n
+
b
|的取值范围.

查看答案和解析>>

科目:高中数学 来源:眉山二模 题型:解答题

已知向量
m
=(x2,y-cx)
n
=(1,x+b)
m
n
,(x,y,b,c∈R),且把其中x,y所满足的关系式记为y=f(x),若f′(x)为f(x)的导函数,F(x)=f(x)+af′(x)(a>0),且F(x)是R上的奇函数.
(Ⅰ)求
b
a
和c的值;
(Ⅱ)若函数f(x)在[
a
2
a2]
上单调递减,求b的取值范围;
(Ⅲ)当a=2时,设0<t<4且t≠2,曲线y=f(x)在点A(t,f(t))处的切线与曲线y=f(x)相交于点B(m,f(m))(A,B不重合),直线x=t与y=f(m)相交于点C,△ABC的面积为S,试用t表示△ABC的面积S(t),若P为S(t)上一动点,D(4,0),求直线PD的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知函数f(x)=xlnx.

(1)求函数f(x)的单调区间和最小值;

(2)当b>0时,求证:bb(其中e=2.718 28…是自然对数的底数);

(3)若a>0,b>0,证明f(a)+(a+b)ln2≥f(a+b)-f(b).

(文)已知向量m=(x2,y-cx),n=(1,x+b)(x,y,b,c∈R)且mn,把其中x,y所满足的关系式记为y=f(x).若f′(x)为f(x)的导函数,F(x)=f(x)+af′(x)(a>0),且F(x)是R上的奇函数.

(1)求和c的值.

(2)求函数f(x)的单调递减区间(用字母a表示).

(3)当a=2时,设0<t<4且t≠2,曲线y=f(x)在点A(t,f(t))处的切线与曲线y=f(x)相交于点B(m,f(m))(A与B不重合),直线x=t与y=f(m)相交于点C,△ABC的面积为S,试用t表示△ABC的面积S(t),并求S(t)的最大值.

查看答案和解析>>

同步练习册答案