精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)求的单调区间与极值;

2)当函数有两个极值点时,求实数a的取值范围.

【答案】1)减区间,增区间 ,极小值为,无极大值;(2.

【解析】

1)求出函数的导函数,根据导函数即可求出单调区间以及极值;

2)求出的导函数,使导函数有两个根,采用分离参数法,结合(1)中的值域即可求出参数的取值范围.

解:(1)由

,则

,即,解得

所以函数的单调递增区间为

,即,解得

所以函数的单调递减区间为

因为函数上单调递减,在上单调递增,

所以函数在处取得极小值,极小值,无极大值.

综上所述,单调递增区间为;单调递减区间为极小值为2,无极大值;

2)由

有两个极值点,则有两个根

有两解,即

有两个交点,

由(1)可知上单调递减;在上单调递增,

,所以

考虑函数

由洛必达法则:

所以若有两个交点,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,由直三棱柱和四棱锥构成的几何体中, ,平面平面

Ⅰ)求证:

Ⅱ)在线段上是否存在点,使直线与平面所成的角为?若存在,求的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

1)讨论的极值;

2)当时,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,分别是棱的中点,点棱上,且.

(1)求证:平面

(2)当时,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在多边形中,四边形为等腰梯形,,四边形为直角梯形,.以为折痕把等腰梯形折起,使得平面平面,如图2所示.

1)证明:平面

2)求直线与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新型冠状病毒肺炎是一种急性感染性肺炎,其病原体是一种先前未在人类中发现的新型冠状病毒,即2019新型冠状病毒.202027日,国家卫健委决定将“新型冠状病毒感染的肺炎”暂命名为“新型冠状病毒肺炎”,简称“新冠肺炎”.患者初始症状多为发热、乏力和干咳,并逐渐出现呼吸困难等严重表现.基于目前流行病学调查,潜伏期为1~14天,潜伏期具有传染性,无症状感染者也可能成为传染源.某市为了增强民众防控病毒的意识,举行了“预防新冠病毒知识竞赛”网上答题,随机抽取人,答题成绩统计如图所示.

1)由直方图可认为答题者的成绩服从正态分布,其中分别为答题者的平均成绩和成绩的方差,那么这名答题者成绩超过分的人数估计有多少人?(同一组中的数据用该组的区间中点值作代表)

2)如果成绩超过分的民众我们认为是“防御知识合格者”,用这名答题者的成绩来估计全市的民众,现从全市中随机抽取人,“防御知识合格者”的人数为,求.(精确到

附:①;②,则;③.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,短轴的一个端点到右焦点的距离为2

1)求椭圆的方程;

2)设分别为椭圆的左、右顶点,如图,过点分别作直线,设直线交椭圆于另一点交椭圆于另一点,分别过作椭圆的两条切线,且两条切线交于点,分别过作椭圆的两条切线,且两条切线交于点.证明:点在直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】PM25是衡量空气质量的重要指标,我国采用世卫组织的最宽值限定值,即PM25日均值在以下空气质量为一级,在空气质量为二级,超过为超标,如图是某地11日至10日的PM25(单位:)的日均值,则下列说法正确的是(

A.10天中PM25日均值最低的是13

B.1日到6PM25日均值逐渐升高

C.10天中恰有5天空气质量不超标

D.10天中PM25日均值的中位数是43

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以线段EF为直径的圆内切于圆Ox2+y216

1)若点F的坐标为(﹣20),求点E的轨迹C的方程;

2)在(1)的条件下,轨迹C上存在点T,使得,其中MN为直线ykx+bb≠0)与轨迹C的交点,求△MNT的面积.

查看答案和解析>>

同步练习册答案