精英家教网 > 高中数学 > 题目详情

【题目】已知α∈(0, ),β∈(0,π),且tan(α﹣β)= ,tanβ=﹣
(1)求tanα;
(2)求2α﹣β的值.

【答案】
(1)解:∵2α﹣β=2(α﹣β)+β,

又tan(α﹣β)=

∴tan2(α﹣β)= =

故tan(2α﹣β)=tan[2(α﹣β)+β]= = =1.

∴tanα=tan[(α﹣β)+β]= =


(2)解:∵0<α<

∴0<2α<

又∵tanβ=﹣ ,且β∈(0,π)β∈( ,π)﹣β∈(﹣π,﹣ ).

∴2α﹣β∈(﹣π,0).又由(1)可得tan(2α﹣β)=1,

∴2α﹣β=﹣


【解析】(1)观察角度的关系发现2α﹣β=2(α﹣β)+β,求出tan2(α﹣β),然后利用两角和的正切函数求出tan(2α﹣β),进而可求tanα的值.(2)再根据tanα、tanβ的值确定α,β的具体范围,进而确定2α﹣β的范围,就可以根据特殊角的三角函数值求出结果.
【考点精析】解答此题的关键在于理解两角和与差的正切公式的相关知识,掌握两角和与差的正切公式:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某厂生产的产品在出厂前都要做质量检测,每件一等品都能通过检测,每件二等品通过检测的概率为.现有件产品,其中件是一等品, 件是二等品.

(Ⅰ)随机选取件产品,设至少有一件通过检测为事件,求事件的概率;

(Ⅱ)随机选取件产品,其中一等品的件数记为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(cosωx,sinωx), =(cosωx, cosωx),其中ω>0,设函数f(x)=
(1)若函数f(x)的最小正周期是π,求函数f(x)的单调递增区间;
(2)若函数f(x)的图象的一个对称中心的横坐标为 ,求ω的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

(Ⅰ)若函数处的切线与直线垂直,求的值;

(Ⅱ)讨论函数极值点的个数,并说明理由;

(Ⅲ)若 恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】上周某校高三年级学生参加了数学测试,年部组织任课教师对这次考试进行成绩分析.现从中抽取80名学生的数学成绩(均为整数)的频率分布直方图如图所示.

(Ⅰ)估计这次月考数学成绩的平均分和众数;

(Ⅱ)假设抽出学生的数学成绩在段各不相同,且都超过94分.若将频率视为概率,现用简单随机抽样的方法,从95,96,97,98,99,100这6个数字中任意抽取2个数,有放回地抽取3次,记这3次抽取中恰好有两名学生的数学成绩的次数为,求的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中, 分别是的中点.

1)证明:平面平面

2上是否存在点,使平面?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2015高考湖北如图,圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2.

(1)圆C的标准方程为________.

(2)过点A任作一条直线与圆O:x2+y2=1相交于M,N两点,下列三个结论:

;②=2;

=2.

其中正确结论的序号是________(写出所有正确结论的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 ).

(Ⅰ)求函数的单调增区间;

(Ⅱ)当时,记,是否存在整数,使得关于的不等式有解?若存在,请求出的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】Sn为数列{an}的前n项和,Sn=2an﹣2(nN+

(1)求{an}的通项公式;

(2)若bn=3nan,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案