精英家教网 > 高中数学 > 题目详情

【题目】已知等差数列{an}的前n项和为Sn , 公差d≠0,S5=4a3+6,且a1 , a3 , a9成等比数列.
(1)求数列{an}的通项公式;
(2)求数列{ }的前n项和公式.

【答案】
(1)解:因为S5=4a3+6,所以5a1+10d=4(a1+2d)+6.①

因为a1,a3,a9成等比数列,所以a1(a1+8d)=(a1+2d)2.②

由①②及d≠0可得:a1=2,d=2.

所以an=2n


(2)解:由an=2n,可知Sn=n2+n

所以 = =

所以数列{ }的前n项和为1﹣ + +…+ = =


【解析】(1)利用S5=4a3+6a,且a1 , a3 , a9成等比数列,建立方程,可求数列的首项与公差,即可得到数列{an}的通项公式;(2)利用裂项法,即可求数列{ }的前n项和公式.
【考点精析】认真审题,首先需要了解等差数列的通项公式(及其变式)(通项公式:),还要掌握等比数列的通项公式(及其变式)(通项公式:)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知以点A(﹣1,2)为圆心的圆与直线m:x+2y+7=0相切,过点B(﹣2,0)的动直线l与圆A相交于M、N两点
(1)求圆A的方程.
(2)当|MN|=2 时,求直线l方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于x的方程x2+(a2﹣1)x+a﹣2=0的两根满足(x1﹣1)(x2﹣1)<0,则a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a,第二次朝上一面的点数为b,则函数y=ax2﹣2bx+1在(﹣∞,2]上为减函数的概率是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,已知下列条件解三角形:
①A=60°,a= ,b=1;
②A=30°,a=1,b=2;
③A=30°,c=10,a=6;
④A=30°,c=10,a=5,
其中有唯一解的序号为( )
A.①②③
B.①②④
C.②③④
D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了培养学生的安全意识,某中学举行了一次安全自救的知识竞赛活动,共有800 名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100 分)进行统计,得到如下的频率分布表,请你根据频率分布表解答下列问题:

序号
(i)

分组
(分数)

组中值
(Gi)

频数
(人数)

频率
(Fi)

1

[60,70)

65

0.10

2

[70,80)

75

20

3

[80,90)

85

0.20

4

[90,100)

95

合计

50

1


(1)求出频率分布表中①、②、③、④、⑤的值;
(2)为鼓励更多的学生了解“安全自救”知识,成绩不低于85分的学生能获奖,请估计在参加的800名学生中大约有多少名学生获奖?
(3)在上述统计数据的分析中,有一项指标计算的程序框图如图所示,则该程序的功能是什么?求输出的S的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,其中为自然对数的底数,求函数的单调区间;

(2)若函数既有极大值,又有极小值,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(12分)

在直角坐标系xOy中,曲线y=x2+mx–2与x轴交于A,B两点,点C的坐标为(0,1).当m变化时,解答下列问题:

(1)能否出现ACBC的情况?说明理由;

(2)证明过A,B,C三点的圆在y轴上截得的弦长为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在实数集R上的函数,且y=f(x+1)是偶函数,当x≥1时,f(x)=2x﹣1,则f( ),f( ),f( )的大小关系是(
A.f( )<f( )<f(
B.f( )<f( )<f( )??
C.f( )<f( )<f(
D.f( )<f( )<f(

查看答案和解析>>

同步练习册答案