【题目】已知等差数列{an}的前n项和为Sn , 公差d≠0,S5=4a3+6,且a1 , a3 , a9成等比数列.
(1)求数列{an}的通项公式;
(2)求数列{ }的前n项和公式.
【答案】
(1)解:因为S5=4a3+6,所以5a1+10d=4(a1+2d)+6.①
因为a1,a3,a9成等比数列,所以a1(a1+8d)=(a1+2d)2.②
由①②及d≠0可得:a1=2,d=2.
所以an=2n
(2)解:由an=2n,可知Sn=n2+n
所以 = = ,
所以数列{ }的前n项和为1﹣ + ﹣ +…+ = =
【解析】(1)利用S5=4a3+6a,且a1 , a3 , a9成等比数列,建立方程,可求数列的首项与公差,即可得到数列{an}的通项公式;(2)利用裂项法,即可求数列{ }的前n项和公式.
【考点精析】认真审题,首先需要了解等差数列的通项公式(及其变式)(通项公式:或),还要掌握等比数列的通项公式(及其变式)(通项公式:)的相关知识才是答题的关键.
科目:高中数学 来源: 题型:
【题目】已知以点A(﹣1,2)为圆心的圆与直线m:x+2y+7=0相切,过点B(﹣2,0)的动直线l与圆A相交于M、N两点
(1)求圆A的方程.
(2)当|MN|=2 时,求直线l方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a,第二次朝上一面的点数为b,则函数y=ax2﹣2bx+1在(﹣∞,2]上为减函数的概率是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,已知下列条件解三角形:
①A=60°,a= ,b=1;
②A=30°,a=1,b=2;
③A=30°,c=10,a=6;
④A=30°,c=10,a=5,
其中有唯一解的序号为( )
A.①②③
B.①②④
C.②③④
D.①③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了培养学生的安全意识,某中学举行了一次安全自救的知识竞赛活动,共有800 名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100 分)进行统计,得到如下的频率分布表,请你根据频率分布表解答下列问题:
序号 | 分组 | 组中值 | 频数 | 频率 |
1 | [60,70) | 65 | ① | 0.10 |
2 | [70,80) | 75 | 20 | ② |
3 | [80,90) | 85 | ③ | 0.20 |
4 | [90,100) | 95 | ④ | ⑤ |
合计 | 50 | 1 |
(1)求出频率分布表中①、②、③、④、⑤的值;
(2)为鼓励更多的学生了解“安全自救”知识,成绩不低于85分的学生能获奖,请估计在参加的800名学生中大约有多少名学生获奖?
(3)在上述统计数据的分析中,有一项指标计算的程序框图如图所示,则该程序的功能是什么?求输出的S的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(12分)
在直角坐标系xOy中,曲线y=x2+mx–2与x轴交于A,B两点,点C的坐标为(0,1).当m变化时,解答下列问题:
(1)能否出现AC⊥BC的情况?说明理由;
(2)证明过A,B,C三点的圆在y轴上截得的弦长为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)是定义在实数集R上的函数,且y=f(x+1)是偶函数,当x≥1时,f(x)=2x﹣1,则f( ),f( ),f( )的大小关系是( )
A.f( )<f( )<f( )
B.f( )<f( )<f( )??
C.f( )<f( )<f( )
D.f( )<f( )<f( )
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com