精英家教网 > 高中数学 > 题目详情
,若-2≤x≤2,-2≤y≤2,则z的最小值为

[     ]

A.-4
B.-2
C.-1
D.0
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012年河南省新乡、许昌、平顶山高考数学二模试卷(理科)(解析版) 题型:选择题

设z= 若-2≤x≤2,-2≤y≤2,则z的最小值为( )
A.-4
B.-2
C.-1
D.0

查看答案和解析>>

科目:高中数学 来源:2011年浙江省杭州高级中学高考数学模拟试卷 (理科)(解析版) 题型:选择题

设z= 若-2≤x≤2,-2≤y≤2,则z的最小值为( )
A.-4
B.-2
C.-1
D.0

查看答案和解析>>

科目:高中数学 来源:2012年高考数学模拟试卷1(理科)(解析版) 题型:选择题

设z= 若-2≤x≤2,-2≤y≤2,则z的最小值为( )
A.-4
B.-2
C.-1
D.0

查看答案和解析>>

同步练习册答案