精英家教网 > 高中数学 > 题目详情
已知集合M={-1,1},N={x|
12
2x+1<4,x∈Z}
,则M∩N=
 
分析:把集合N中的不等式变形后,利用指数函数的单调性列出关于x的不等式,求出解集中的整数解即可得到集合N的元素,然后利用求交集的法则求出M与N的交集即可.
解答:解:集合N中的不等式可化为:2-1<2x+1<22
因为2>1,所以指数函数y=2x为增函数,则-1<x+1<2即-2<x<1,由x∈Z得到x的值可以是-1和0
所以N={-1,0},则M∩N═{-1,1}∩{-1,0}={-1}
故答案为:{-1}
点评:本题属于以函数的单调性为平台,求集合的交集的基础题,是高考常会考的题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

1、已知集合M={1,2,3,5},集合N={3,4,5},则M∩N=
{3,5}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={-1,1,3,5}和N={-1,1,2,4}.设关于x的二次函数f(x)=ax2-4bx+1(a,b∈R).
(Ⅰ)若b=1时,从集合M取一个数作为a的值,求方程f(x)=0有解的概率;
(Ⅱ)若从集合M和N中各取一个数作为a和b的值,求函数y=f(x)在区间[1,+∞)上是增函数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={-1,0,1,2},从集合M中有放回地任取两元素作为点P的坐标.
(1)写出这个试验的所有基本事件,并求出基本事件的个数;
(2)求点P落在坐标轴上的概率;
(3)求点P落在圆x2+y2=4内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•邯郸二模)已知集合M⊆{1,2,3,4},且M∩{1,2}={1,2},则集合M的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={-1,1},N={x|
1
4
2x-1<2,x∈Z}
,则M∩N=(  )

查看答案和解析>>

同步练习册答案