A. | $({1,\sqrt{3}}]$ | B. | $({1,\sqrt{2}}]$ | C. | $[{\sqrt{3},+∞})$ | D. | $[{\sqrt{2},+∞})$ |
分析 设MF1=s,MF2=t,由椭圆的定义可得s+t=2a1,由双曲线的定义可得s-t=2a2,运用勾股定理和离心率公式,计算即可得到所求范围.
解答 解:设MF1=s,MF2=t,由椭圆的定义可得s+t=2a1,
由双曲线的定义可得s-t=2a2,
解得s=a1+a2,t=a1-a2,
由∠F1MF2=90°,运用勾股定理,可得
s2+t2=4c2,
即为a12+a22=2c2,
由离心率的公式可得,$\frac{1}{{{e}_{1}}^{2}}+\frac{1}{{{e}_{2}}^{2}}=2$,
由e1∈[$\frac{{\sqrt{6}}}{3}$,1),可得${{e}_{1}}^{2}$∈[$\frac{2}{3}$,1),
即有2-$\frac{1}{{{e}_{1}}^{2}}$∈[$\frac{1}{2}$,1),
解得e2∈(1,$\sqrt{2}$].
故选:B.
点评 本题考查椭圆和双曲线的定义、方程和性质,主要考查离心率的求法,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{3}$或$\frac{2π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 8 | B. | 7 | C. | 2 | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com