【题目】如图,在几何体中,四边形为菱形,对角线与的交点为,四边形为梯形, .
(Ⅰ)若,求证: 平面;
(Ⅱ)求证:平面平面;
(Ⅲ)若, , ,求与平面所成角.
【答案】(I)证明见解析;(II)证明见解析;(III).
【解析】试题分析:(1)取的中点,连接,证明为平行四边形,可得,利用线面平行的判定定理即可证明平面;(2)先证明, ,可证明平面,从而可证明平面平面;(3)做于为与平面所成角,根据余弦定理及等腰三角形性质即可求与平面所成角.
试题解析:(Ⅰ)证明:取的中点,连接, .
∵对角线与的交点为,
∴,
∵,∴,∴为平行四边形,
∴,
∵平面, 平面,
∴平面;
(Ⅱ)证明:∵四边形为菱形,
∴,
∵, 是的中点,
∴,
∵,
∴平面,
∵平面,
∴平面平面;
(Ⅲ)
作于.
∵平面平面,∴平面,
∴为与平面所成角,
由题意, 为正三角形, ,
∵,
∴为正三角形,∴.
中,由余弦定理可得,
∴,
∴,
∴与平面所成角.
【方法点晴】本题主要考查线面平行的判定定理、直线和平面成的角的定义及求法、线面垂直的判定定理以及面面垂直的判定定理,属于中档题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面. 本题(Ⅰ)是就是利用方法①证明的.
科目:高中数学 来源: 题型:
【题目】根据以往的经验,某工程施工期间的将数量X(单位:mm)对工期的影响如下表:
降水量X | X<300 | 300≤X<700 | 700≤X<900 | X≥900 |
工期延误天数Y | 0 | 2 | 6 | 10 |
历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9,求:
(1)工期延误天数Y的均值与方差;
(2)在降水量X至少是300的条件下,工期延误不超过6天的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知y=f(x)是二次函数,方程f(x)=0有两相等实根,且f′(x)=2x+2
(1)求f(x)的解析式.
(2)求函数y=f(x)与y=﹣x2﹣4x+1所围成的图形的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥P﹣ABCD中,底面ABCD是一直角梯形,BA⊥AD,AD∥BC,AB=BC=2,PA=3,AD=6,PA⊥底面ABCD,E是PD上的动点.若CE∥平面PAB,则三棱锥C﹣ABE的体积为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)=ax2﹣(a+1)x+1
(1)解关于x的不等式f(x)>0;
(2)若对任意的a∈[﹣1,1],不等式f(x)>0恒成立,求x的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,圆的极坐标方程为,若以极点为原点,极轴所在的直线为轴建立平面直角坐标系.
(1)求圆的参数方程;
(2)在直线坐标系中,点是圆上的动点,试求的最大值,并求出此时点的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1=2,前n项和为Sn , 若Sn=2(an﹣1),(n∈N+).
(1)求数列{an}的通项公式;
(2)设bn=(log2an+1)2﹣(log2an)2 , 若cn=anbn , 求{cn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四组函数中,表示同一函数的是( )
A.f(x)=lgx2 , g(x)=2lgx?
B.f(x)= ? ,g(x)=
C.f(x)=x﹣2,g(x)= ?
D.f(x)=lgx﹣2,g(x)=lg
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com