精英家教网 > 高中数学 > 题目详情
6.已知f(x)=3x,若实数x1,x2,…x2015满足x1+x2+…+x2015=3,则f(x1)f(x2)…f(x2015)的值=27.

分析 根据指数幂的运算性质即可求出.

解答 解:f(x)=3x,实数x1,x2,…x2015满足x1+x2+…+x2015=3,
则f(x1)f(x2)…f(x2015)=${3}^{{x}_{1}+{x}_{2}+…+{x}_{2015}}$=33=27,
故答案为:27.

点评 本题考查了指数幂的运算性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.设直线3x-4y+5=0的倾斜角为θ,则sin2θ=$\frac{24}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设a∈R,若x<0时,均有[(a+1)x-1](x2-ax-1)≥0,则a=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)是定义在R上的奇函数,且当x>0时,f(x)=ax-2其中a>0且a≠1.
(1)求f(2)+f(-2)的值;
(2)求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=$\left\{\begin{array}{l}{x^3},x≤a\\{x^2},x>a.\end{array}$若存在实数b,使函数g(x)=f(x)-b有两个零点,则a的取值范围是(  )
A.(-∞,-1)∪(0,+∞)B.(-∞,0)∪(1,+∞)C.(-∞,0)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x2-ax+2a-3
(1)若函数g(x)=f(6x)在(-∞,1)有两个不相等的零点,求a的取值范围;
(2)若a=2,且存在实数t,当x∈[1,m](m>1)时,f(x+t)≤4x恒成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=lg(10x+a)是定义域为R上的奇函数,h(x)=tf(x).
(1)求实数a的值;
(2)若h(x)≤xlog3x在x∈[3,8]上恒成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在数列{an}中,设a1=a2=2,a3=4,若数列$\left\{{\frac{{{a_{n+1}}}}{a_n}}\right\}$为等差数列,则a5=48.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$,若关于x的方程[f(x)]3-a|f(x)|+2=0有两个不等实根,则实数a的取值范围是(  )
A.(0,1)B.(1,3)C.(-1,3)D.(3,∞)

查看答案和解析>>

同步练习册答案