【题目】某饮品店提供、两种口味的饮料,且每种饮料均有大杯、中杯、小杯三种容量.甲、乙二人各随机点一杯饮料,且甲只点大杯,乙点中杯或小杯,则甲、乙所点饮料的口味相同的概率为______.
科目:高中数学 来源: 题型:
【题目】如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2.将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D﹣ABC,如图2所示.
(Ⅰ)求证:BC⊥平面ACD;
(Ⅱ)求几何体D﹣ABC的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的图象的一条对称轴为,其中为常数,且,给出下述四个结论:
①函数的最小正周期为;
②将函数的图象向左平移所得图象关于原点对称;
③函数在区间,上单调递增;
④函数在区间上有个零点.
其中所有正确结论的编号是( )
A.①②B.①③C.①③④D.①②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【选修4-4:坐标系与参数方程】
在平面直角坐标系中,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系.已知曲线的极坐标方程为.倾斜角为,且经过定点的直线与曲线交于两点.
(Ⅰ)写出直线的参数方程的标准形式,并求曲线的直角坐标方程;
(Ⅱ)求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某超市在节日期间进行有奖促销,凡在该超市购物满元的顾客,将获得一次摸奖机会,规则如下:一个袋子装有只形状和大小均相同的玻璃球,其中两只是红色,三只是绿色,顾客从袋子中一次摸出两只球,若两只球都是红色,则奖励元;共两只球都是绿色,则奖励元;若两只球颜色不同,则不奖励.
(1)求一名顾客在一次摸奖活动中获得元的概率;
(2)记为两名顾客参与该摸奖活动获得的奖励总数额,求随机变量的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(为自然对数的底数),为的导函数,且.
(1)求实数的值;
(2)若函数在处的切线经过点,求函数的极值;
(3)若关于的不等式对于任意的恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lg(x+1).
(1)若0<f(1-2x)-f(x)<1,求实数x的取值范围;
(2)若g(x)是以2为周期的偶函数,且当0≤x≤1时,有g(x)=f(x),当x∈[1,2]时,求函数y=g(x)的解析式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为促进全面健身运动,某地跑步团体对本团内的跑友每周的跑步千米数进行统计,随机抽取的100名跑友,分别统计他们一周跑步的千米数,并绘制了如图频率分布直方图.
(1)由频率分布直方图计算跑步千米数不小于70千米的人数;
(2)已知跑步千米数在的人数是跑步千米数在的,跑步千米数在的人数是跑步千米数在的,现在从跑步千米数在的跑友中抽取3名代表发言,用表示所选的3人中跑步千米数在的人数,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年开始,国家逐步推行全新的高考制度.新高考不再分文理科,采用3+3模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科目满分100分.为了应对新高考,某高中从高一年级1000名学生(其中男生550人,女生 450 人)中,采用分层抽样的方法从中抽取名学生进行调查.
(1)已知抽取的名学生中含女生45人,求的值及抽取到的男生人数;
(2)学校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),下表是根据调查结果得到的列联表. 请将列联表补充完整,并判断是否有 99%的把握认为选择科目与性别有关?说明你的理由;
(3)在抽取的选择“地理”的学生中按分层抽样再抽取6名,再从这6名学生中抽取2人了解学生对“地理”的选课意向情况,求2人中至少有1名男生的概率.
0.05 | 0.01 | |
3.841 | 6.635 |
参考公式:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com