精英家教网 > 高中数学 > 题目详情
4.已知两直线l1:(a-1)x-3y-10=0,l2:(a+1)x+y+3=0互相平行,则a=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.1D.-1

分析 由直线平行可得a-1-(-3)(a+1)=0,解方程排除重合即可.

解答 解:∵两直线l1:(a-1)x-3y-10=0,l2:(a+1)x+y+3=0互相平行,
∴a-1-(-3)(a+1)=0,解得a=$-\frac{1}{2}$,
经验证当a=-$\frac{1}{2}$时,两直线平行.
故选:A.

点评 本题考查直线的一般式方程和平行关系,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.在直角坐标系中,函数$f(x)={(\frac{1}{2})^{|{x+1}|}}$的大致图象为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\left\{\begin{array}{l}{x+2(x≤-1)}\\{{x}^{2}(-1<x<2)}\\{2x(x≥2)}\end{array}\right.$. 
(1)求f(-4),f(3),f[f(-2)]的值;
(2)若f(a)=0,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知集合A={x|$\frac{2x-3}{x+5}$≤0},B={x|x2-3x+2<0},U=R,求
(Ⅰ)A∩B;
(Ⅱ)A∪B;
(Ⅲ)(∁UA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,已知AB是⊙O的一条弦,延长AB到点C使AB=BC,过点B作DB⊥AC且DB=AB,连接DA与⊙O交于点E,连接CE与⊙O交于点F.
(1)求证:DF⊥CE.
(2)若AB=$\sqrt{6}$,DF=$\sqrt{3}$,求BE.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.正三棱锥的底面边长为2,则经过高的中点且平行于底面的平面截该三棱锥所得的截面面积是$\frac{\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知方程x2+y2-6x+2y+m=0.
(1)若此方程表示圆,求实数m的取值范围;
(2)若已知(1)中的圆与直线x+2y-2=0相交于A,B两点,并且以线段AB为直径的圆经过坐标原点O,求此时m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,已知c=$\sqrt{3}$,b=1,B=30°,求角C,A和边a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.利用图象解不等式:
(1)sin2x<-$\frac{1}{2}$;
(2)cos$\frac{x}{4}$≥$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步练习册答案