(05年上海卷)(16分)
已知抛物线的焦点为F,A是抛物线上横坐标为4、且位于轴上方的点,A到抛物线准线的距离等于5.过A作AB垂直于轴,垂足为B,OB的中点为M.
(1)求抛物线方程;
(2)过M作,垂足为N,求点N的坐标;
(3)以M为圆心,MB为半径作圆M,当是轴上一动点时,讨论直线AK与圆M的位置关系.
解析:(1) 抛物线y2=2px的准线为x=-,于是4+=5, ∴p=2.
∴抛物线方程为y2=4x.
(2)∵点A是坐标是(4,4), 由题意得B(0,4),M(0,2),
又∵F(1,0), ∴kFA=;MN⊥FA, ∴kMN=-,
则FA的方程为y=(x-1),MN的方程为y-2=-x,解方程组得x=,y=,
∴N的坐标(,).
(1) 由题意得, ,圆M.的圆心是点(0,2), 半径为2,
当m=4时, 直线AK的方程为x=4,此时,直线AK与圆M相离.
当m≠4时, 直线AK的方程为y=(x-m),即为4x-(4-m)y-4m=0,
圆心M(0,2)到直线AK的距离d=,令d>2,解得m>1
∴当m>1时, AK与圆M相离;
当m=1时, AK与圆M相切;
当m<1时, AK与圆M相交.
科目:高中数学 来源: 题型:
(09年江苏百校样本分析)(10分)挑选空军飞行学员可以说是“万里挑一”,要想通过需过“五关”――目测、初检、复检、文考、政审等. 某校甲、乙、丙三个同学都顺利通过了前两关,有望成为光荣的空军飞行学员. 根据分析,甲、乙、丙三个同学能通过复检关的概率分别是0.5,0.6,0.75,能通过文考关的概率分别是0.6,0.5,0.4,通过政审关的概率均为1.后三关相互独立.
(1)求甲、乙、丙三个同学中恰有一人通过复检的概率;
(2)设通过最后三关后,能被录取的人数为,求随机变量的期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
(08年周至二中三模理) 已知等差数列{an}的公差为2,若a1,a3,a4成等比数列,则a2等于 ( )
(A)-4 (B)-6 (C)-8 (D)-10
查看答案和解析>>
科目:高中数学 来源: 题型:
(08年滨州市质检三文)(12分)已知函数.
(I)当m>0时,求函数的单调递增区间;
(II)是否存在小于零的实数m,使得对任意的,都有,若存在,求m的范围;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com