精英家教网 > 高中数学 > 题目详情
1.若x,y∈R,且$\left\{\begin{array}{l}x≥1\\ x-2y+3≥0\\ y≥x\end{array}\right.$,则z=x+2y的最大值等于9.

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}x≥1\\ x-2y+3≥0\\ y≥x\end{array}\right.$作出可行域如图,

联立$\left\{\begin{array}{l}{y=x}\\{x-2y+3=0}\end{array}\right.$,解得B(3,3),
化目标函数z=x+2y为$y=-\frac{x}{2}+\frac{z}{2}$,
由图可知,当直线$y=-\frac{x}{2}+\frac{z}{2}$过B时,直线在y轴上的截距最大,z有最大值为3+2×3=9.
故答案为:9.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.下列说法正确的是(  )
A.铺的很平的一张白纸是一个平面B.平面是矩形或平行四边形的形状
C.两个平面叠在一起比一个平面厚D.平面的直观图一般画成平行四边形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知圆C1:x2+y2=$\frac{2}{5}$,直线l:y=x+m(m>0)与圆C1相切,且交椭圆C2:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)于A1,B1两点,c是椭圆C2的半焦距,c=$\sqrt{3}$b.
(1)求m的值;
(2)O为坐标原点,若$\overrightarrow{O{A}_{1}}$⊥$\overrightarrow{O{B}_{1}}$,求椭圆C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求由抛物线y=x2-2x+5与直线y=x+5所围成的图形的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知△ABC中,a,b,c分别为角A,B,C的对应边,A=30°,B=45°,a=7,则边长b为(  )
A.$\frac{7}{2}\sqrt{2}$B.$14\sqrt{2}$C.$7\sqrt{2}$D.$\frac{7}{3}\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知{an}为等差数列,且a1+a3=8,a2+a4=12
(1)求{an}通项公式;
(2)记{an}的前n项和为Sn,若a1,ak+1,Sk+3成等比数列,求正整数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数y=f(x)是定义在区间[-2,2]上的奇函数,当0≤x≤2时的图象如图所示,则y=f(x)的值域为[-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2},0≤x<a}\\{{2}^{x},x≥a}\end{array}\right.$,若存在实数b,使函数g(x)=f(x)-b有两个零点,则实数a的取值范围是(  )
A.(0,2)B.(2,+∞)C.(2,4)D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在1L高产小麦种子中混入1粒带麦锈病的种子,从中随机取出20mL,则不含有麦锈病种子的概率为$\frac{49}{50}$.

查看答案和解析>>

同步练习册答案