(15分)已知函数.
(1)若的切线,函数
处取得极值1,求
,
,
的值;
证明:
;
(3)若,且函数
上单调递增,
求实数的取值范围。
科目:高中数学 来源: 题型:解答题
已知函数,(
).
(Ⅰ)已知函数的零点至少有一个在原点右侧,求实数
的范围.
(Ⅱ)记函数的图象为曲线
.设点
,
是曲线
上的不同两点.如果在曲线
上存在点
,使得:①
;②曲线
在点
处的切线平行于直线
,则称函数
存在“中值相依切线”.
试问:函数(
且
)是否存在“中值相依切线”,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com