精英家教网 > 高中数学 > 题目详情

【题目】设命题p:函数f(x)=lg(ax2x a)的定义域为R;命题q:不等式3x-9x<a对一切正实数均成立.如果命题“p∨q”为真命题,“p∧q”为假命题,求实数a的取值范围( ).
A.0≤a<1
B.0≤a
C.a≤1
D.0≤a≤1

【答案】D
【解析】若命题p为真,即ax2x a>0恒成立,

令y=3x-9x=-
x>0得3x>1,
∴y=3x-9x的值域为(-∞,0).
∴若命题q为真,则a≥0.
由命题“p∨q”为真,“p∧q”为假,得命题p、q一真一假,当p真q假时,a不存在;当p假q真时,0≤a≤1.
∴a的取值范围是0≤a≤1.故选D.
【考点精析】利用四种命题的真假关系对题目进行判断即可得到答案,需要熟知一个命题的真假与其他三个命题的真假有如下三条关系:(原命题 逆否命题)①、原命题为真,它的逆命题不一定为真;②、原命题为真,它的否命题不一定为真;③、原命题为真,它的逆否命题一定为真.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定义在区间(﹣1,1)上的偶函数f(x),在(0,1)上为增函数,f(a﹣2)﹣f(4﹣a2)<0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直线与抛物线交于A、B两点,线段AB的垂直平分线与直线y=-5交于Q点.

(1)求点Q的坐标;
(2)当P为抛物线上位于线段AB下方(含A、B)的动点时,求ΔOPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【选修4-4:坐标系与参数方程】

已知直线l:ρsin(θ+)=m,曲线C:

(1)当m=3时,判断直线l与曲线C的位置关系;

(2)若曲线C上存在到直线l的距离等于的点,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 C 的中心在坐标原点,焦点在 X 轴上,椭圆 C 上的点到焦点距离的最大值为3,最小值为1.
(1)求椭圆 C 的标准方程;
(2)若直线 与椭圆 C 相交于 A,B 两点( A,B 不是左右顶点),且以 AB 为直径的图过椭圆 C 的右顶点.求证:直线 l 过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】判断下列命题是全称命题还是特称命题,并判断其真假;写出这些命题的否定并判断真假.
(1)三角形的内角和为180°;
(2)每个二次函数的图象都开口向下;
(3)存在一个四边形不是平行四边形;
(4);
(5).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方形的四个顶点都在椭圆上,若椭圆的焦点在正方形的内部,则椭圆的离心率的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体ABCD﹣A′B′C′D′中,E是棱BC的中点,G是棱DD′的中点,则异面直线GB与B′E所成的角为(

A.120°
B.90°
C.60°
D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某高级中学学生的体重状况,打算抽取一个容量为n的样本,已知该校高一、高二、高三学生的数量之比依次为4:3:2,现用分层抽样的方法抽出的样本中高三学生有10人,那么样本容量n为(
A.50
B.45
C.40
D.20

查看答案和解析>>

同步练习册答案