精英家教网 > 高中数学 > 题目详情
13.已知不等式(x-1)m<2x-1对x∈(0,3)恒成立,求实数m的取值范围.

分析 可以构造关于x的一次函数,利用一次函数的性质解题即可.

解答 解:因为不等式(x-1)m<2x-1对x∈(0,3)恒成立,
即(m-2)x+1-m<0 对x∈(0,3)恒成立,
设f(x)=(m-2)x+1-m,x∈(0,3)
当m=2时,f(x)=-1<0恒成立;
当m≠2时,f(x)为关于x的一次函数,
只要满足$\left\{\begin{array}{l}{f(0)≤0}\\{f(3)≤0}\end{array}\right.$,解得1≤m≤$\frac{5}{2}$且m≠2,
综上所述:实数m的取值范围为[1,$\frac{5}{2}$].

点评 本题考查了利用构造一次函数,利用转换思想解决恒成立问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.若函数f(x)=x2+2x+alnx在(0,1)上单调递减,则实数a的取值范围是(  )
A.a≥0B.a≤0C.a≥-4D.a≤-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设f(x)=x3-3x+a有唯一零点,则a的取值范围是(  )
A.(-2,2)B.(-∞,-2)∪(2,+∞)C.(2,+∞)D.(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,等边三角形PAB所在的平面与平行四边形ABCD所在的平面垂直,E是线段BC中点,∠ABC=60°,BC=2AB=2.
(Ⅰ)在线段PA上确定一点F,使得EF∥平面PCD,并说明理由;
(Ⅱ)求二面角P-CD-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设a≥1,f(x)=x|x-a|$+\frac{3}{2}$,若f(x)≥a对任意x∈[1,2]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若对任意实数x使得不等式|x-a|-|x+2|≤3恒成立,则实数a的取值范围是(  )
A.[-1,5]B.[-2,4]C.[-1,1]D.[-5,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知x与y之间的几组数据如表:
x123456
y021334
假设根据如表数据所得线性回归直线l的方程为$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,则l一定经过的点为(  )
A.(1,0)B.(2,2)C.($\frac{7}{2}$,$\frac{13}{6}$)D.(3,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知x>0,y>0,若-1≤lg$\frac{x}{y}$≤2,1≤lg(xy)≤4,则lg$\frac{{x}^{2}}{y}$的取值范围是(  )
A.[-1,5]B.[-1,4]C.(2,6)D.(0,5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若a、b、c∈R,且a>b>0,则下列不等式一定成立的是(  )
A.a-c<b-cB.$\sqrt{a}$>$\sqrt{b}$C.$\frac{a}{c}$>$\frac{b}{c}$D.ac2>bc2

查看答案和解析>>

同步练习册答案