精英家教网 > 高中数学 > 题目详情
16.不等式3x2+5x-2<0的解集为(  )
A.(-∞,-2)∪($\frac{1}{3}$,+∞)B.(-2,$\frac{1}{3}$)C.[-2,$\frac{1}{3}$)D.(-2,$\frac{1}{3}$]

分析 原不等式可化为(3x-1)(x+2)<0,可得其对应方程的根,进而可得解集.

解答 解:不等式3x2+5x-2<0可化为:
(3x-1)(x+2)<0,
解得-2<x<$\frac{1}{3}$,
故解集为{-2,$\frac{1}{3}$},
故选:B.

点评 本题考查一元二次不等式的解集,因式分解是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知f(x)=$\frac{x}{1+x}$,x≥0,若f1(x)=f(x),fn+1(x)=f(fn(x)),n∈N+,则f2015(x)的表达式为$\frac{x}{1+2015x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.计算下列各式的值.
(1)121${\;}^{\frac{1}{2}}$    
(2)($\frac{125}{27}$)${\;}^{-\frac{2}{3}}$     
(3)2$\sqrt{3}$×$\root{3}{3}$×$\root{6}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知等比数列{an}的各项均为正数,公比q≠1,记P=$\frac{{a}_{2}+{a}_{10}}{2}$,Q=$\sqrt{{a}_{5}{a}_{7}}$,则P与Q的大小关系是(  )
A.P<QB.P>QC.P=QD.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若函数f(x)=x2+bln(x+1)在其定义域内既有极大值又有极小值,则实数b的取值范围为(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知{an}为等差数列,且a5=14,a7=20.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}的通项公式为bn=$\frac{1}{{{a}_{n}a}_{n+1}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.点的集合M={(x,y)|xy>0}是指(  )
A.第一象限内点的集合B.第三象限内点的集合
C.第一、三象限内点的集合D.第二、四象限内点的集合

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.给出下列命题:①若两个空间向量相等,则它们的起点相同,终点也相同;②若空间向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$=$\overrightarrow{b}$;③在正方体BCD-A1B1C1D1中,必有$\overrightarrow{AC}$=$\overrightarrow{{A}_{1}{C}_{1}}$;④若空间向量$\overrightarrow{m}$,$\overrightarrow{n}$,$\overrightarrow{p}$满足$\overrightarrow{m}$=$\overrightarrow{n}$,$\overrightarrow{n}$=$\overrightarrow{p}$,则$\overrightarrow{m}$=$\overrightarrow{p}$;⑤空间中任意两个单位向量必相等.其中正确的个数为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知关于x的不等式ax2+x<0的解集中的整数恰有2个,则(  )
A.$\frac{1}{3}$<a≤$\frac{1}{2}$B.$\frac{1}{3}$≤a<$\frac{1}{2}$
C.$\frac{1}{3}$<a≤$\frac{1}{2}$或-$\frac{1}{2}$≤a<-$\frac{1}{3}$D.$\frac{1}{3}$≤a<$\frac{1}{2}$或-$\frac{1}{2}$<a≤-$\frac{1}{3}$

查看答案和解析>>

同步练习册答案