精英家教网 > 高中数学 > 题目详情

【题目】精准扶贫是巩固温饱成果、加快脱贫致富、实现中华民族伟大“中国梦”的重要保障.某地政府在对某乡镇企业实施精准扶贫的工作中,准备投入资金将当地农产品进行二次加工后进行推广促销,预计该批产品销售量万件(生产量与销售量相等)与推广促销费万元之间的函数关系为(其中推广促销费不能超过5千元).已知加工此农产品还要投入成本万元(不包括推广促销费用),若加工后的每件成品的销售价格定为元/件.

(1)试将该批产品的利润万元表示为推广促销费万元的函数;(利润=销售额-成本-推广促销费)

(2)当推广促销费投入多少万元时,此批产品的利润最大?最大利润为多少?

【答案】(1) ;(2) 当推广促销费投入3万元时,利润最大,最大利润为27万元.

【解析】试题分析:根据题意即可求得,化简即可;

利用基本不等式可以求出该函数的最值,注意等号成立的条件,即可得到答案;

解析:(1)由题意知

.

(2)∵

.

当且仅当时,上式取“

∴当时, .

答:当推广促销费投入3万元时,利润最大,最大利润为27万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知二次函数满足,且.

(1)求的解析式;

(2)当时,不等式有解,求实数的取值范围;

(3)设,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(a﹣bx3)ex ,且函数f(x)的图象在点(1,e)处的切线与直线x﹣(2e+1)y﹣3=0垂直.
(Ⅰ)求a,b;
(Ⅱ)求证:当x∈(0,1)时,f(x)>2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学习雷锋精神前半年内某单位餐厅的固定餐椅经常有损坏,学习雷锋精神时全修好;单位对学习雷锋精神前后各半年内餐椅的损坏情况作了一个大致统计,具体数据如表:

损坏餐椅数

未损坏餐椅数

学习雷锋精神前

50

150

200

学习雷锋精神后

30

170

200

80

320

400

求:学习雷锋精神前后餐椅损坏的百分比分别是多少?并初步判断损毁餐椅数量与学习雷锋精神是否有关?

请说明是否有以上的把握认为损毁餐椅数量与学习雷锋精神

有关?参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当 时,求函数图象在点处的切线方程;

(2)当时,讨论函数的单调性;

(3)是否存在实数,对任意恒成立?若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为常数.

(1)求函数的单调区间;

(2)若的一条切线,求的值;

(3)已知为整数,若对任意,都有恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,函数.

(1) 若,求曲线处的切线方程;

(2)求函数单调区间

(3) 若有两个零点,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量(单位:克)分别在中,经统计得频率分布直方图如图所示.

(1)现按分层抽样从质量为的芒果中随机抽取6个,再从这6个中随机抽取3个,求这3个芒果中恰有1个在内的概率;

(2)某经销商来收购芒果,以各组数据的中间数代表这组数据的平均值,用样本估计总体,该种植园中还未摘下的芒果大约还有10000个,经销商提出如下两种收购方案:

方案:所有芒果以10元/千克收购;

方案:对质量低于250克的芒果以2元/个收购,高于或等于250克的以3元/个收购.

通过计算确定种植园选择哪种方案获利更多?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在“新零售”模式的背景下,某大型零售公司咪推广线下分店,计划在市的区开设分店,为了确定在该区开设分店的个数,该公司对该市已开设分店听其他区的数据作了初步处理后得到下列表格.记表示在各区开设分店的个数, 表示这个个分店的年收入之和.

(个)

2

3

4

5

6

(百万元)

2.5

3

4

4.5

6

(1)该公司已经过初步判断,可用线性回归模型拟合的关系,求关于的线性回归方程

(2)假设该公司在区获得的总年利润(单位:百万元)与之间的关系为,请结合(1)中的线性回归方程,估算该公司应在区开设多少个分时,才能使区平均每个分店的年利润最大?

(参考公式: ,其中

查看答案和解析>>

同步练习册答案