精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知直线的参数方程为是参数),以原点为极点,轴的非负半轴

为极轴,建立极坐标系,曲线的极坐标方程为

(Ⅰ)求直线的普通方程与曲线的直角坐标方程;

(Ⅱ)设点在曲线上,曲线在点处的切线与直线垂直,求点的直角坐标.

【答案】(Ⅰ);(Ⅱ)

【解析】

(Ⅰ)根据直线参数方程消去参数,即可求出直线普通方程;根据极坐标与直角坐标的互化公式,即可求出直角坐标方程;

(Ⅱ)设点,根据题意,得到,再由点在曲线上,列出方程组,求解,即可得出结果.

(Ⅰ)由消去参数,得,即

所以直线的普通方程是

,得

根据公式,所以曲线的直角坐标方程是

(Ⅱ)对于直线的参数方程为是参数),因为,所以直线的斜率是

因为曲线处的切线与直线垂直,又曲线处的切线与垂直,

所以直线与直线平行.

所以直线与直线的斜率相等.所以直线的斜率

设点,则,整理得

又因为点在曲线上,

所以其坐标必然满足曲线的方程:,代入得

联立解得

所以点的直角坐标为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列的前项和满足为常数,,且),,若存在正整数,使得成立;数列是首项为2,公差为的等差数列,为其前项和,则以下结论正确的是(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点的曲线的方程为

(Ⅰ)求曲线的标准方程:

(Ⅱ)已知点为直线上任意一点,过的垂线交曲线于点

(ⅰ)证明:平分线段(其中为坐标原点);

(ⅱ)求最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fxx2+ax+lnxaR

1)讨论函数fx)的单调性;

2)若fx)存在两个极值点x1x2|x1x2|,求|fx1)﹣fx2|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知直线的参数方程为是参数),以原点为极点,轴的非负半轴

为极轴,建立极坐标系,曲线的极坐标方程为

(Ⅰ)求直线的普通方程与曲线的直角坐标方程;

(Ⅱ)设点在曲线上,曲线在点处的切线与直线垂直,求点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从2011年到2018年参加北约”“华约考试而获得加分的学生(每位学生只能参加北约”“华约中的一种考试)人数可以通过以下表格反映出来.(为了方便计算,将2011年编号为12012年编号为2,依此类推)

年份

1

2

3

4

5

6

7

8

人数

2

3

4

4

7

7

6

6

1)求这八年来,该校参加北约”“华约考试而获得加分的学生人数的中位数和方差;

2)根据最近五年的数据,利用最小二乘法求出之间的线性回归方程,并依此预测该校2019年参加北约”“华约考试而获得加分的学生人数.(结果要求四舍五入至个位)

参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥,底面为矩形,中点,

1)求证:平面平面

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求的极值;

2)若方程有三个解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为提高产品质量,某企业质量管理部门经常不定期地对产品进行抽查检测,现对某条生产线上随机抽取的100个产品进行相关数据的对比,并对每个产品进行综合评分(满分100分),将每个产品所得的综合评分制成如图所示的频率分布直方图.记综合评分为80分及以上的产品为一等品.

1)求图中的值,并求综合评分的中位数;

2)用样本估计总体,视频率作为概率,在该条生产线中随机抽取3个产品,求所抽取的产品中一等品数的分布列和数学期望.

查看答案和解析>>

同步练习册答案