精英家教网 > 高中数学 > 题目详情

已知椭圆的中心为坐标原点,一个长轴端点为,短轴端点和焦点所组成的四边形为正方形,直线y轴交于点P(0,m),与椭圆C交于相异两点A、B,且

(1)求椭圆方程;

(2)求m的取值范围.

(1)(2)所求m的取值范围为(-1,-)∪(,1)


解析:

【解题思路】通过,沟通A、B两点的坐标关系,再利用判别式和根与系数关系得到一个关于m的不等式。

(1)由题意可知椭圆为焦点在轴上的椭圆,可设

由条件知,又有,解得

故椭圆的离心率为,其标准方程为: 

(2)设l与椭圆C交点为Ax1y1),Bx2y2

得(k2+2)x2+2kmx+(m2-1)=0

Δ=(2km2-4(k2+2)(m2-1)=4(k2-2m2+2)>0 (*)

x1x2=, x1x2= 

∵=3 ∴-x1=3x2

消去x2,得3(x1x22+4x1x2=0,∴3()2+4=0

整理得4k2m2+2m2k2-2=0  

m2=时,上式不成立;m2≠时,k2=,

λ=3 ∴k≠0 ∴k2=>0,∴-1<m<- 或 <m<1

容易验证k2>2m2-2成立,所以(*)成立

即所求m的取值范围为(-1,-)∪(,1)   

【名师指引】椭圆与向量、解三角形的交汇问题是高考热点之一,应充分重视向量的功能

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,
OA
+
OB
a
=(3,-1)共线.
(Ⅰ)求椭圆的离心率;
(Ⅱ)设M为椭圆上任意一点,且
OM
OA
OB
(λ,μ∈R)
,证明λ22为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心为坐标原点O,椭圆短半轴长为1,动点M(2,t)(t>0)在直线x=
a2c
(a为长半轴,c为半焦距)上.
(1)求椭圆的标准方程
(2)求以OM为直径且被直线3x-4y-5=0截得的弦长为2的圆的方程;
(3)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心为坐标原点,斜率为1且过椭圆右焦点F(2,0)的直线交椭圆于A,B两点,
OA
+
OB
a
=(3,-1)
共线,则该椭圆的长半轴长为
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心为坐标原点O,椭圆短半轴长为1,动点M(2,t)(t>0)在直线x=
a2c
(a为长半轴,c为半焦距)上.
(1)求椭圆的标准方程;
(2)求以OM为直径且被直线3x-4y-5=0截得的弦长为2的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,
OA
+
OB
a
=(3,-1)
共线,则该椭圆的离心率为(  )
A、
5
3
B、
3
2
C、
6
3
D、
2
2
3

查看答案和解析>>

同步练习册答案