精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面为正方形,底面为线段的中点,为线段上的动点.

1)平面与平面是否互相垂直?如果垂直,请证明;如果不垂直,请说明理由.

2)若为线段的三等分点,求多面体的体积.

【答案】1)互相垂直,证明见解析(2.

【解析】

(1)证明平面中的即可.

(2)利用多面体的体积为,为线段的两个不同的三等分点进行求解即可.

解法一:(1)平面与平面互相垂直,

理由如下:

因为底面,平面,

所以

因为为正方形,所以

,且平面,

所以平面

因为平面,所以

因为,为线段的中点,所以,

,且平面,

所以平面,

因为平面,所以平面平面

2)因为底面,为线段的中点,

所以点到底面的距离为,

,

为线段的三等分点,

时,,

所以多面体的体积为

时,,

所以多面体的体积为

综上,多面体的体积为.

解法二:(1)平面与平面互相垂直,

理由如下:

因为底面,平面,所以平面底面,

又平面底面,,平面,

所以平面

因为平面,所以

因为,为线段的中点,所以,

,且平面,

所以平面,

因为平面,

所以平面平面

2)同解法一.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一种作图工具如图1所示.是滑槽的中点,短杆可绕转动,长杆通过处铰链与连接,上的栓子可沿滑槽AB滑动,且.当栓子在滑槽AB内作往复运动时,带动转动一周(不动时,也不动),处的笔尖画出的曲线记为.以为原点,所在的直线为轴建立如图2所示的平面直角坐标系.

)求曲线C的方程;

)设动直线与两定直线分别交于两点.若直线总与曲线有且只有一个公共点,试探究:的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】太极图被称为“中华第一图”.从孔庙大成殿梁柱,到楼观台、三茅宫标记物;从道袍、卦摊、中医、气功、武术到韩国国旗,太极图无不跃居其上.这种广为人知的太极图,其形状如阴阳两鱼互抱在一起,因而被称为“阴阳鱼太极图”.在如图所示的阴阳鱼图案中,阴影部分可表示为,设点,则的最大值与最小值之差是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某租车公司给出的财务报表如下:

年度

项目

2014

1-12月)

2015

1-12月)

2016

1-11月)

接单量(单)

14463272

40125125

60331996

油费(元)

214301962

581305364

653214963

平均每单油费(元)

14.82

14.49

平均每单里程(公里)

15

15

每公里油耗(元)

0.7

0.7

0.7

有投资者在研究上述报表时,发现租车公司有空驶情况,并给出空驶率的计算公式为.

1)分别计算20142015年该公司的空驶率的值(精确到0.01%);

22016年该公司加强了流程管理,利用租车软件,降低了空驶率并提高了平均每单里程,核算截止到1130日,空驶率在2015年的基础上降低了20个百分点,问2016年前11个月的平均每单油费和平均每单里程分别为多少?(分别精确到0.01元和0.01公里).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机调查了人,他们年龄的频数分布及支持生育二胎人数如下表:

年龄

频数

支持“生二胎”

1)由以上统计数据填下面列联表,并问是否有的把握认为以岁为分界点对“生育二胎放开”政策的支持度有差异;

年龄不低于岁的人数

年龄低于岁的人数

合计

支持

不支持

合计

2)若对年龄在的被调查人中随机选取两人进行调查,恰好这两人都支持“生育二胎放开”的概率是多少?

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司举办捐步公益活动,参与者通过捐赠每天的运动步数获得公司提供的牛奶,再将牛奶捐赠给留守儿童.此活动不但为公益事业作出了较大的贡献,公司还获得了相应的广告效益.据测算,首日参与活动人数为人,以后每天人数比前一天都增加天后捐步人数稳定在第天的水平,假设此项活动的启动资金为万元,每位捐步者每天可以使公司收益元(以下人数精确到人,收益精确到元).

1)求活动开始后第天的捐步人数,及前天公司的捐步总收益;

2)活动开始第几天以后公司的捐步总收益可以收回启动资金并有盈余?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点是抛物线的焦点,直线相交于不同的两点

1)求的方程;

2)若直线经过点,求的面积的最小值(为坐标原点)

3)已知点,直线经过点为线段的中点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】太极图是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种相互转化,相对统一的和谐美,定义:能够将圆的周长和面积同时等分成两个部分的函数称为圆的一个太极函数,则下列有关说法中:

①对于圆的所有非常数函数的太极函数中,都不能为偶函数;

②函数是圆的一个太极函数;

③直线所对应的函数一定是圆的太极函数;

④若函数是圆的太极函数,则

所有正确的是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于数列,定义

(1),是否存在,使得?请说明理由;

(2) ,求数列的通项公式;

(3) ,求证:“为等差数列”的充要条件是“的前4项为等差数列为等差数列”.

查看答案和解析>>

同步练习册答案