精英家教网 > 高中数学 > 题目详情

【题目】:实数满足,其中 :实数满足.

(1)若,且为真,求实数的取值范围;

(2)若的必要不充分条件,求实数的取值范围.

【答案】(1) 实数的取值范围是;(2) 实数的取值范围是.

【解析】试题分析:(1)利用一元二次不等式的解法可化简命题p,q,若pq为真,则p,q至少有1个为真,即可得出;(2)根据p是q的必要不充分条件,即可得出.

试题解析:

(1)由x2﹣4ax+3a20,得(x﹣3a)(x﹣a)<0,

又a0,所以a<x<3a,

当a=1时,1<x<3,即p为真时实数x的取值范围是1<x<3.

q为真时等价于(x﹣2)(x﹣3)0,得2<x<3,

即q为真时实数x的取值范围是2<x<3.

若pq为真,则实数x的取值范围是1<x<3.

(2)p是q的必要不充分条件,等价于qp且p推不出q,

设A={x|a<x<3a},B={x|2<x<3},则BA;

所以实数a的取值范围是1≤a≤2。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知常数解关于的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某食品厂定期购买面粉.已知该厂每天需用面粉6t,每吨面粉的价格为1800元,面粉的保管等其他费用为平均每吨每天3元,购面粉每次需支付运费900元.
(1)求该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少?
(2)若提供面粉的公司规定:当一次购买面粉不少于210t时,其价格可享受9折优惠(即原价的90%),问该厂是否考虑利用此优惠条件?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在物理实验中,为了研究所挂物体的重量x对弹簧长度y的影响.某学生通过实验测量得到物体的重量与弹簧长度的对比表:

物体重量(单位g)

1

2

3

4

5

弹簧长度(单位cm)

1.5

3

4

5

6.5


(1)画出散点图;
(2)利用公式(公式见卷首)求y对x的回归直线方程;
(3)预测所挂物体重量为8g时的弹簧长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂家拟在2017年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)(单位:万件)与年促销费用(单位:万元)()满足 为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知2017年生产该产品的固定投入为8万元.每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).

(1)将2017年该产品的利润(单位:万元)表示为年促销费用(单位:万元)的函数;

(2)该厂家2017年的促销费用投入多少万元时,厂家的利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB分别是椭圆的左、右端点,F是椭圆的右焦点,点P在椭圆上,且位于x轴上方,PAPF.

1P的坐标;

2M是椭圆长轴AB上的一点,M到直线AP的距离等于MB,求椭圆上的点到点M的距离d的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的前n项和为Sn,且S4=4S2a2n=2an+1.

(Ⅰ)求数列{an}的通项公式.

(Ⅱ)设数列{bn}的前n项和为TnTnλ(λ为常数)cnb2n(n∈N*)求数列{cn}的前n项和Rn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

以直角坐标系的原点为极点轴的正半轴为极轴且两个坐标系取相等的单位长度.已知直线的参数方程是为参数),曲线的极坐标方程是

(1)写出直线的普通方程和曲线的直角坐标方程

(2)设直线与曲线相交于两点的中点的极坐标为的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系内,动点与两定点 连线的斜率之积为.

(1)求动点的轨迹的方程;

(2)设点 是轨迹上相异的两点.

(Ⅰ)过点 分别作抛物线的切线 两条切线相交于点,证明:

(Ⅱ)若直线与直线的斜率之积为,证明: 为定值,并求出这个定值.

查看答案和解析>>

同步练习册答案