精英家教网 > 高中数学 > 题目详情

函数.
(1)令,求的解析式;
(2)若上恒成立,求实数的取值范围;
(3)证明:.

(1);(2)实数的取值范围;(3)详见解析.

解析试题分析:(1)因为,故, ,,,由此可得,是以4为周期,重复出现,故;(2)若上恒成立,求实数的取值范围,由得,,即上恒成立,令,只需求出上的最小值即可,可利用导数法来求最小值;(3)证明:,由(2)知:,即,这样得到,令,叠加即可证出.
试题解析:(1)…周期为4,
.
(2)方法一:即上恒成立,
时,
时,,设


,则增;减.
,所以上存在唯一零点,设为,则
,所以处取得最大值,在处取得最小值,.
综上:.
方法二:设.
.
时,上恒成立,成立,故
时,上恒成立,,无解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数
(1)若,求函数上的最小值;
(2)若函数存在单调递增区间,试求实数的取值范围;
(3)求函数的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求函数上的最大值;
(2)令,若在区间上不单调,求的取值范围;
(3)当时,函数的图像与x轴交于两点,且,又的导函数,若正常数满足条件.证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若处取得极值,求实数的值;
(2)求函数的单调区间;
(3)若上没有零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,
(1)求函数上的最小值;
(2)若存在是自然对数的底数,,使不等式成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知处取得极值,且在点处的切线斜率为.
⑴求的单调增区间;
⑵若关于的方程在区间上恰有两个不相等的实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知某商品的进货单价为1元/件,商户甲往年以单价2元/件销售该商品时,年销量为1万件,今年拟下调销售单价以提高销量,增加收益.据测算,若今年的实际销售单价为x元/件(1≤x≤2),今年新增的年销量(单位:万件)与(2-x)2成正比,比例系数为4.
(1)写出今年商户甲的收益y(单位:万元)与今年的实际销售单价x间的函数关系式;
(2)商户甲今年采取降低单价,提高销量的营销策略是否能获得比往年更大的收益(即比往年收益更多)?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知某商品的进货单价为1元/件,商户甲往年以单价2元/件销售该商品时,年销量为1万件,今年拟下调销售单价以提高销量,增加收益.据测算,若今年的实际销售单价为x元/件(1≤x≤2),今年新增的年销量(单位:万件)与(2-x)2成正比,比例系数为4.
(1)写出今年商户甲的收益y(单位:万元)与今年的实际销售单价x间的函数关系式;
(2)商户甲今年采取降低单价,提高销量的营销策略是否能获得比往年更大的收益(即比往年收益更多)?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax3+bx2-3x(a、b∈R)在点x=-1处取得极大值为2.
(1)求函数f(x)的解析式;
(2)若对于区间[-2,2]上任意两个自变量的值x1、x2,都有|f(x1)-f(x2)|≤c,求实数c的最小值.

查看答案和解析>>

同步练习册答案