函数.
(1)令,求的解析式;
(2)若在上恒成立,求实数的取值范围;
(3)证明:.
科目:高中数学 来源: 题型:解答题
已知函数.
(1)当时,求函数在上的最大值;
(2)令,若在区间上不单调,求的取值范围;
(3)当时,函数的图像与x轴交于两点,且,又是的导函数,若正常数满足条件.证明:.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知某商品的进货单价为1元/件,商户甲往年以单价2元/件销售该商品时,年销量为1万件,今年拟下调销售单价以提高销量,增加收益.据测算,若今年的实际销售单价为x元/件(1≤x≤2),今年新增的年销量(单位:万件)与(2-x)2成正比,比例系数为4.
(1)写出今年商户甲的收益y(单位:万元)与今年的实际销售单价x间的函数关系式;
(2)商户甲今年采取降低单价,提高销量的营销策略是否能获得比往年更大的收益(即比往年收益更多)?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知某商品的进货单价为1元/件,商户甲往年以单价2元/件销售该商品时,年销量为1万件,今年拟下调销售单价以提高销量,增加收益.据测算,若今年的实际销售单价为x元/件(1≤x≤2),今年新增的年销量(单位:万件)与(2-x)2成正比,比例系数为4.
(1)写出今年商户甲的收益y(单位:万元)与今年的实际销售单价x间的函数关系式;
(2)商户甲今年采取降低单价,提高销量的营销策略是否能获得比往年更大的收益(即比往年收益更多)?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=ax3+bx2-3x(a、b∈R)在点x=-1处取得极大值为2.
(1)求函数f(x)的解析式;
(2)若对于区间[-2,2]上任意两个自变量的值x1、x2,都有|f(x1)-f(x2)|≤c,求实数c的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com