精英家教网 > 高中数学 > 题目详情
6.设x,y满足约束条件$\left\{\begin{array}{l}x+y-8≤0\\ x-y-2≤0\\ x-2≥0\end{array}\right.$,则z=2x-y的最小值为-2.

分析 先根据约束条件画出可行域,再利用z的几何意义求最值,只需求出直线z=2x-y过可行域内的点A时,从而得到z=2x-y的最小值即可.

解答 解:依题意,画出可行域(如图示),

则对于目标函数z=2x-y,
当直线经过A(2,6)时,
z取到最小值,zmin=-2.
故答案为:-2

点评 本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.在长方体ABCD-A1B1C1D1中,E、F分别是棱BC,CC1上的点,CF=AB=2CE,AB:AD:AA1=1:2:4,二面角A1-ED-F的正弦值$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设a,b,c为非零实数,则x=$\frac{a}{|a|}$+$\frac{|b|}{b}$+$\frac{c}{|c|}$+$\frac{{|{abc}|}}{abc}$的所有值所组成的集合为(  )
A.{0,4}B.{-4,0}C.{-4,0,4}D.{0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等差数列{an}的首项为a,公差为b,等比数列{bn}的首项为b,公比为a(其中a,b均为正整数).
(1)若a1=b1,a2=b2,求数列{an},{bn}的通项公式;
(2)对于(1)中的数列{an}和{bn},对任意k∈N*在bk与bk+1之间插入ak个2,得到一个新的数列{cn},试求满足等式$\sum_{i=1}^m{{c_i}=2{c_{m+1}}}$的所有正整数m的值;
(3)已知a1<b1<a2<b2<a3,若存在正整数m,n,t以及至少三个不同的b值使得am+t=bn成立,求t的最小值,并求t最小时a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知圆x2+y2-4x+2y=0,则过圆内一点E(1,0)的最短弦长为(  )
A.$\sqrt{3}$B.2$\sqrt{2}$C.2$\sqrt{3}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知圆x2+y2=4与双曲线$\frac{x^2}{4}-\frac{y^2}{b^2}$=1(b>0)的两条渐近线相交于A,B,C,D四点,若四边形ABCD的面积为2b,则b=$2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若函数f(x)=lnx+$\frac{a}{x}$在区间[1,e]上最小值为$\frac{3}{2}$,则实数a的值为(  )
A.$\frac{3}{2}$B.$\sqrt{e}$C.$\frac{e}{2}$D.非上述答案

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.圆(x-3)2+(y+5)2=r2(r>0)上点到直线4x-3y-2=0的最小距离为1,则r=(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.平行于直线l:2x-y=0且与圆x2+y2=5相切的直线的方程是(  )
A.2x-y+=0或2x-y-=0B.2x+y+=0或2x+y-=0
C.2x-y+5=0或2x-y-5=0D.2x+y+5=0或2x+y-5=0

查看答案和解析>>

同步练习册答案