精英家教网 > 高中数学 > 题目详情
14.已知f(x)是偶函数,若当x>0时,f(x)=ex+lnx,则当x<0时,f(x)=(  )
A.ex+lnxB.e-x+ln(-x)C.e-x+lnxD.-ex+ln(-x)

分析 由x>0时f(x)的解析式,设x<0,则-x>0,得f(-x)的解析式,又f(x)是偶函数,得出x<0时f(x)的解析式.

解答 解;当x<0时,-x>0,
∵当x>0时,f(x)=ex+lnx,
∴f(-x)=e-x+ln(-x),
因为f(x)是为偶函数,
所以f(-x)=f(x),
所以f(x)=e-x+ln(-x);
即x<0,f(x)=e-x+ln(-x);
故选:B

点评 本题利用函数的奇偶性考查了求函数解析式的知识,是教材中的基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,用一块矩形木板紧贴一墙角围成一个直三棱柱空间堆放谷物.已知木板的长BC紧贴地面且为4米,宽BE为2米,墙角的两堵墙面所成二面角为120°,且均与地面垂直,如何放置木板才能使这个空间的体积最大,最大体积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.从4种蔬菜品种中选出3种,分别种植在不同土质的3块土地上,不同的种植方法共有(  )
A.12种B.24种C.36种D.48种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.函数y=$\sqrt{3-4x+{x}^{2}}$的定义域为M.
(1)求M和函数的值域;
(2)当x∈M时,关于x的方程4x-2×2x=b(b∈R)有两个不等实数根,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在复平面内,复数-5-2i对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x2+mx+n(m,n∈R),f(0)=f(1),且方程x=f(x)有两个相等的实数根.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)当x∈[0,3]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列说法正确的是(  )
A.函数y=x+$\frac{2}{x}$的最小值为2$\sqrt{2}$
B.函数y=sinx+$\frac{2}{sinx}$(0<x<π)的最小值为2$\sqrt{2}$
C.函数y=|x|+$\frac{2}{|x|}$的最小值为2$\sqrt{2}$
D.函数y=lgx+$\frac{2}{lgx}$的最小值为2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.方程x|x|-y|y|=-1的曲线即为函数y=f(x)的图象,对于函数y=f(x),有如下结论:
①f(x)在R上单调递减;
②函数F(x)=f(x)-x-$\sqrt{2}$存在3个零点;
③函数y=f(x)的值域是R;
④函数g(x)和f(x)的图象关于原点对称,则函数y=g(x)的图象就是方程x|x|-y|y|=1确定的曲线.
其中所有正确的命题序号是②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知Sn为等差数列{an}的前n项和,a4=4,S5=15.
(1)求数列{an}的通项公式;
(2)若等比数列{bn}满足b1=a1,b4=a27,Tn为数列{bn}的前n项和,且Tn=40.求n的值.

查看答案和解析>>

同步练习册答案