精英家教网 > 高中数学 > 题目详情
已知O为坐标原点,点A(2,0),B(0,2),C(cosα,sinα),且0<α<π.
(Ⅰ)若
AC
BC
=
3
5
,求tanα的值;
(Ⅱ)若|
OA
+
OC
|=
7
,求
OB
OC
的夹角.
分析:(1)先由
AC
BC
=
3
5
,求出sinα+cosα=
1
5
,再根据再cos2α+sin2α=1以及α的范围,可得
cosα和sinα的值,从而求得tanα的值.
(2)由
OA
+
OC
=(2+cosα,sinα),|
OA
+
OC
|=
7
,求得cosα=
1
2
,从而求得α的值.
解答:解:(1)∵
AC
BC
=(cosα-2,sinα)•(cosα,sinα-2)=cos2α-2cosα+sin2α-2sinα
=1-2cosα-2sinα=
3
5

且 0<α<π,∴sinα+cosα=
1
5

再由 cos2α+sin2α=1 可得 cosα=-
3
5
,sinα=
4
5
,故tanα=-
4
3

(2)∵
OA
+
OC
=(2+cosα,sinα),|
OA
+
OC
|=
7

∴4+4cosα+cos2α+sin2α=7,解得cosα=
1
2

∴α=
π
3
点评:本题主要考查两个向量的数量积公式的应用,向量的模的定义,求向量的模的方法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知O为坐标原点,点A(x,y)与点B关于x轴对称,
j
=(0,1)
,则满足不等式
OA
2
+
j
AB
≤0
的点A的集合用阴影表示(  )
A、精英家教网
B、精英家教网
C、精英家教网
D、精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为坐标原点,点A(2,1),点P在区域
y≤x
x+y≥2
y>3x-6
内运动,则
OA
OP
的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•天河区三模)已知O为坐标原点,点M坐标为(-2,1),在平面区域
x≥0
x+y≤2
y≥0
上取一点N,则使|MN|为最小值时点N的坐标是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为坐标原点,点P(x,y),其中x,y满足
x+2y-5≤0
x+2y-3≥0
x≥1
y≥0
,则直线OP的斜率的最大值为
2
2

查看答案和解析>>

同步练习册答案