【题目】已知抛物线的焦点为.
(1)若抛物线的焦点到准线的距离为4,直线,求直线截抛物线所得的弦长;
(2)过点的直线交抛物线于两点,过点作抛物线的切线,两切线相交于点,若分别表示直线与直线的斜率,且,求的值.
科目:高中数学 来源: 题型:
【题目】如图,已知抛物线的顶点在坐标原点,焦点在x轴上,且过点(2,4),圆,过圆心的直线l与抛物线和圆分别交于P,Q,M,N,则的最小值为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在圆内有一点,为圆上一动点,线段的垂直平分线与的连线交于点.
(Ⅰ)求点的轨迹方程.
(Ⅱ)若动直线与点的轨迹交于、两点,且以为直径的圆恒过坐标原点.问是否存在一个定圆与动直线总相切.若存在,求出该定圆的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中华民族是一个传统文化丰富多彩的民族,各民族有许多优良的传统习俗,如过大年吃饺子,元宵节吃汤圆,端午节吃粽子,中秋节吃月饼等等,让人们感受到浓浓的节目味道,某家庭过大年时包有大小和外观完全相同的肉馅饺子、蛋馅饺子和素馅饺子,一家4口人围坐在桌旁吃年夜饭,当晚该家庭吃饺子时每盘中混放8个饺子,其中肉馅饺子4个,蛋馅饺子和素馅饺子各2个,若在桌上上一盘饺子大家共同吃,记每个人第1次夹起的饺子中肉馅饺子的个数为,若每个人各上一盘饺子,记4个人中第1次夹起的是肉馅饺子的人数为,假设每个人都吃饺子,且每人每次都是随机地从盘中夹起饺子.
(1)求随机变量的分布列;
(2)若的数学期望分别记为、,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,且.
(1)求实数的值;
(2)判断函数在区间上的单调性,并用函数单调性的定义证明;
(3)求实数的取值范围,使得关于的方程分别为:
①有且仅有一个实数解;②有两个不同的实数解;③有三个不同的实数解.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知与分别是边长为1与2的正三角形, ,四边形为直角梯形,且, ,点为的重心, 为中点, 平面, 为线段上靠近点的三等分点.
(Ⅰ)求证: 平面;
(Ⅱ)若二面角的余弦值为,试求异面直线与所成角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com