精英家教网 > 高中数学 > 题目详情

【题目】定义域为的偶函数满足对,有,且当时, ,若函数上至多有三个零点,则的取值范围是

__________.

【答案】

【解析】

∵f(x+2)=f(x)﹣f(1),

f(x)是定义域为R的偶函数,

x=﹣1可得f(﹣1+2)=f(﹣1)﹣f(1),

f(﹣1)=f(1),

∴f(1)=0 则有f(x+2)=f(x),

∴f(x)是最小正周期为2的偶函数.

x∈[2,3]时,f(x)=﹣2x2+12x﹣18=﹣2(x﹣3)2

函数的图象为开口向下、顶点为(3,0)的抛物线.

函数y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三个零点,

g(x)=loga(|x|+1),则f(x)的图象和g(x)的图象至多有3个交点.

可以分两种情况:其一是有交点时,其二是一个交点也没有,

当一个交点都没有时,即a>1.

当有交点时,∵f(x)≤0,∴g(x)≤0,可得0<a<1,

要使函数y=f(x)﹣loga(|x|+1)在(0,+∞)上至多有三个零点,

则有g(4)<f(4),可得 loga(4+1)>f(4)=﹣2,

loga5<25>,解得,又0a1a1

故答案为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知为自然对数的底数, ).

(1)的导函数,证明:, 的最小值小于0;

(2)恒成立,求符合条件的最小整数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中有大小相同的3个红球和2个白球,现从袋中每次取出一个球,若取出的是红球则放回袋中,继续取一个球,若取出的是白球,则不放回,再从袋中取一球,直到取出两个白球或者取球5,则停止取球,设取球次数为,

(1)求取球3次则停止取球的概率;

(2)求随机变量的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆)与直线相切,设点为圆上一动点,轴于,且动点满足,设动点的轨迹为曲线

(1)求曲线的方程;

(2)直线与直线垂直且与曲线交于两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在对人们休闲方式的一次调查中共调查120其中女性70男性50人.女性中有40人主要的休闲方式是看电视另外30人主要的休闲方式是运动;男性中有20人主要的休闲方式是看电视另外30人主要的休闲方式是运动.

(1)根据以上数据建立一个2×的列联表:

休闲方式

性别     

看电视

运 动

总 计

女 性

男 性

总 计

(2)有多大的把握认为休闲方式与性别有关?

参考公式及数据:K2

①当K22.70690%的把握认为AB有关联;

②当K23.84195%的把握认为AB有关联;

③当K26.63599%的把握认为AB有关联.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校高三年级共有1000名学生,其中男生650人,女生350人,为了调查学生周末的休闲方式,用分层抽样的方法抽查了200名学生.

)完成下面的列联表;

不喜欢运动

喜欢运动

合计

女生

50

男生

合计

100

200

)在抽取的样本中,调查喜欢运动女生的运动时间,发现她们的运动时间介于30分钟到90分钟之间,右图是测量结果的频率分布直方图,若从区间段的所有女生中随机抽取两名女生,求她们的运动时间在同一区间段的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】C(A)表示非空集合A中的元素个数,定义A*BA={1,2},B={x|(x2ax)·(x2ax+2)=0},且A*B=1,设实数a的所有可能取值组成的集合是S,则C(S)等于(  )

A. 1 B. 3

C. 5 D. 7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是 (为参数).

(1)将曲线的极坐标方程化为直角坐标方程;

(2)若直线与曲线相交于两点,且,求直线的倾斜角的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某购物网站对在7座城市的线下体验店的广告费指出(万元)和销售额(万元)的数据统计如下表:

城市

广告费支出

销售额

(Ⅰ)若用线性回归模型拟合关系,求关于的线性回归方程;

(Ⅱ)若用对数函数回归模型拟合的关系,可得回归方程,经计算对数函数回归模型的相关系数约为,请说明选择哪个回归模型更合适,并用此模型预测城市的广告费用支出万元时的销售额.

参考数据: .

参考公式: .

相关系数.

查看答案和解析>>

同步练习册答案