精英家教网 > 高中数学 > 题目详情

【题目】给出下列说法:①“”是“”的充分不必要条件;②命题“”的否定是“”;③小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件为“4个人去的景点不相同”,事件为“小赵独自去一个景点”,则;④设,其正态分布密度曲线如图所示,那么向正方形中随机投掷10000个点,则落入阴影部分的点的个数的估计值是6587.(注:若,则)其中正确说法的个数为( )

A.1B.2C.3D.4

【答案】C

【解析】

①求出使即可判断;

②全称命题的否定是特称命题,根据书写规则来判断;

③利用条件概率的计算公式计算即可;

④利用正太分布的对称性计算即可.

解:①由,故“”是“”的充分不必要条件,①正确;

②命题“”的否定是“”, ②错误;

③由条件概率的计算公式得,③正确;

④由已知落入阴影部分的点的个数的估计值是

,④正确.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数上单调递增,求实数的取值范围;

(2)若函数有两个不同的零点.

(ⅰ)求实数的取值范围;

(ⅱ)求证:.(其中的极小值点)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为为常数)对于任意的恒成立.

1)若,求的值;

2)证明:数列是等差数列;

3)若,关于的不等式有且仅有两个不同的整数解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点分别在轴,轴上运动,,点在线段上,且.

1)求点的轨迹的方程;

2)直线交于两点,,若直线的斜率之和为2,直线是否恒过定点?若是,求出定点的坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数上的单调区间;

2)用表示中的最大值,的导函数,设函数,若上恒成立,求实数的取值范围;

3)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两同学在复习数列时发现原来曾经做过的一道数列问题因纸张被破坏,导致一个条件看不清,具体如下:等比数列的前n项和为,已知_____

1)判断的关系;

2)若,设,记的前n项和为,证明:.

甲同学记得缺少的条件是首项a1的值,乙同学记得缺少的条件是公比q的值,并且他俩都记得第(1)问的答案是成等差数列.如果甲、乙两同学记得的答案是正确的,请你通过推理把条件补充完整并解答此题.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】O为坐标原点,动点M在椭圆C上,过Mx轴的垂线,垂足为N,点P满足.

1)求点P的轨迹方程;

2)设点在直线上,且.证明:过点P且垂直于OQ的直线C的左焦点F.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数).以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,圆的极坐标方程为.

(1)求直线的普通方程与圆的直角坐标方程;

(2)设动点在圆上,动线段的中点的轨迹为与直线交点为,且直角坐标系中,点的横坐标大于点的横坐标,求点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新型冠状病毒属于属的冠状病毒,有包膜,颗粒常为多形性,其中包含着结构为数学模型的,人体肺部结构中包含的结构,新型冠状病毒肺炎是由它们复合而成的,表现为.则下列结论正确的是(

A.,则为周期函数

B.对于的最小值为

C.在区间上是增函数,则

D.,满足,则

查看答案和解析>>

同步练习册答案