精英家教网 > 高中数学 > 题目详情
4.已知双曲线的一个焦点与抛物线x2=24y的焦点重合,其一条渐近线的倾斜角为60°,则该双曲线的标准方程为(  )
A.$\frac{x^2}{9}-\frac{y^2}{27}=1$B.$\frac{y^2}{9}-\frac{x^2}{27}=1$C.$\frac{y^2}{27}-\frac{x^2}{9}=1$D.$\frac{x^2}{27}-\frac{y^2}{9}=1$

分析 求出抛物线的焦点坐标,利用双曲线的渐近线方程得到a,b关系,求解即可.

解答 解:抛物线x2=24y的焦点:(0,6),可得c=6,双曲线的渐近线的倾斜角为60°,双曲线的焦点坐标在y轴上.
可得$\frac{a}{b}=\sqrt{3}$,即$\frac{{b}^{2}}{{a}^{2}}$=$\frac{1}{3}$,36=a2+b2,解得a2=27,b2=9.
所求双曲线方程为:$\frac{{y}^{2}}{27}-\frac{{x}^{2}}{9}=1$.
故选:C.

点评 本题考查抛物线的简单性质以及双曲线的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.把一个三角形分割成几个小正三角形,有两种简单的“基本分割法”.
基本分割法1:如图①,把一个正三角形分割成4个小正三角形,增加3个.
基本分割法2:如图②,把一个正三角形分割成6个小正三角形,增加5个.
请你运用上述两种“基本分割法”,解决下列问题:

(1)把图③的正三角形分割成9个小正三角形;
(2)把图④的正三角形分割成10个小正三角形;
(3)把图⑤的正三角形分割成11个小正三角形;
(4)把图⑥的正三角形分割成12个小正三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=2msinx-ncosx,直线$x=\frac{π}{3}$是函数f(x)图象的一条对称轴,则$\frac{n}{m}$=-$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知定义在R上的函数y=f(x)对任意的x都满足f(x+2)=f(x),当-1≤x<1时,f(x)=x3.若函数g(x)=f(x)-loga|x|恰有6个不同零点,则a的取值范围是(  )
A.($\frac{1}{7}$,$\frac{1}{5}$]∪(5,7]B.($\frac{1}{5}$,$\frac{1}{3}$]∪(5,7]C.($\frac{1}{5}$,$\frac{1}{3}$]∪(3,5]D.($\frac{1}{7}$,$\frac{1}{5}$]∪(3,5]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,空间四边形ABCD的对棱AD、BC成90°的角,且AD=BC=a,平行于AD与BC的截面分别交AB、AC、CD、BD于E、F、G、H.E在AB上,截面EGFH的最大面积是$\frac{1}{4}{a}^{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.将一个数列中部分项按原来的先后次序排列所成的一个新数列称为原数列的一个子数列.如果数列存在成等比数列的子数列,那么称该数列为“弱等比数列”.已知m>1,设区间(m,+∞)内的三个正整数a,x,y满足:数列a2,$\sqrt{{y}^{2}-1}$,cos$\frac{π}{2}$,x2-1为“弱等比数列”,则$\frac{a}{x}$的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知${f_0}(x)=x{e^x},{f_1}(x)={f'_0}(x),{f_2}(x)={f'_1}(x),…,{f_n}(x)={f'_{n-1}}(x)(n∈{N^+})$.
(Ⅰ)请写出fn(x)的表达式(不需证明);
(Ⅱ)设fn(x)的极小值点为Pn(xn,yn),求yn
(Ⅲ)设${g_n}(x)=-{x^2}-2(n+1)x-8n+8$,gn(x)的最大值为a,fn(x)的最小值为b,求b-a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知m>n>0,x是m、n的等差中项,y是m、n的等比中项,则x,y的大小关系是(  )
A.x>yB.x=y
C.x<yD.大小不确定,与m、n的取值有关

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知实数x,y,z满足x+y+z=1,求3x2+2y2+2z2的最小值.

查看答案和解析>>

同步练习册答案