精英家教网 > 高中数学 > 题目详情

【题目】若两个函数的图象经过若干次平移后能够重合,则称这两个函数为“同形”函数,给出下列四个函数:,则“同形”函数是(

A.B.C.D.

【答案】D

【解析】

根据“同形”函数的定义可知,所选的两个三角函数周期相等,振幅也相等,先将四个函数利用辅助角公式化简变形,逐个分析每个函数的最小正周期和振幅,由此可得出结论.

根据本题所给的信息:两个函数的图象经过若干次平移后能够重合,则称这两个函数为“同形”函数,所以,所选的两个函数最小正周期相等,振幅也相等.

,该函数的最小正周期为,振幅为

,该函数的最小正周期为,振幅为

,该函数的最小正周期为,振幅为

,该函数的最小正周期为,振幅为.

所以要得到函数的图象,只需将函数的图象先向左平移个单位长度,再向下平移个单位长度即可.

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,AB是海岸线OMON上两个码头,海中小岛有码头Q到海岸线OMON的距离分别为,测得,以点O为坐标原点,射线OMx轴的正半轴,建立如图所示的直角坐标系,一艘游轮以小时的平均速度在水上旅游线AB航行(将航线AB看作直线,码头Q在第一象限,航线BB经过点Q.

1)问游轮自码头A沿方向开往码头B共需多少分钟?

2)海中有一处景点P(设点P平面内,,且),游轮无法靠近,求游轮在水上旅游线AB航行时离景点P最近的点C的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C)的焦距为,且右焦点F与短轴的两个端点组成一个正三角形.若直线l与椭圆C交于,且在椭圆C上存在点M,使得:(其中O为坐标原点),则称直线l具有性质H.

1)求椭圆C的方程;

2)若直线l垂直于x轴,且具有性质H,求直线l的方程;

3)求证:在椭圆C上不存在三个不同的点PQR,使得直线都具有性质H.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】福彩是利国利民游戏,其刮刮乐之《蓝色奇迹》:如图(1)示例,刮开票面看到最左侧一列四个两位数字为“我的号码”,最上行四个两位数为“中奖号码”,这八个两位数是0099这一百个数字随机产生的,若两个数字相同即中得其相交线上的奖金,奖金可以累加.小明买的一张《蓝色奇迹》刮刮乐如图(2),除了一个“我的号码”外,他已经刮开票面上其它所有数字,依据目前的信息,小明从这张刮刮乐得到的奖金额高于600元的概率为(无所得税)( )

图(1) 图(2)

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,已知曲线的方程为,曲线的方程为.以极点为原点,极轴为轴正半轴建立直角坐标系

(1)求曲线的直角坐标方程;

(2)若曲线轴相交于点,与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,棱长为a的正方体,N是棱的中点;

1)求直线AN与平面所成角的大小;

2)求到平面ANC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,焦距为,抛物线的焦点F是椭圆的顶点.

1)求的标准方程;

2上不同于F的两点PQ满足以PQ为直径的圆经过F,且直线PQ相切,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,当P(xy)不是原点时,定义P伴随点

P是原点时,定义P伴随点为它自身,平面曲线C上所有点的伴随点所构成的曲线定义为曲线C伴随曲线”.现有下列命题:

若点A伴随点是点,则点伴随点是点A

单位圆的伴随曲线是它自身;

若曲线C关于x轴对称,则其伴随曲线关于y轴对称;

一条直线的伴随曲线是一条直线.

其中的真命题是_____________(写出所有真命题的序列).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四边形的直角梯形,,为线段的中点,平面为线段上一点(不与端点重合).

(Ⅰ)若

(i)求证:平面

(ii)求直线与平面所成的角的大小;

(Ⅱ)否存在实数满足,使得平面与平面所成的锐角为,若存在,确定的值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案