精英家教网 > 高中数学 > 题目详情

若直线l的斜率为k,倾斜角为α,而α∈[)∪[,π),则k的取值范围是(  )

(A)[-,1)  (B)[,1)

(C)[-,0)  (D)[-,0)∪[,1)

D.∵k=tanα在[)和[π,π)上都是增函数,∴k∈[,1)∪[-,0).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

直线l的斜率为k,倾斜角为α,若-1<k<1,则α的取值范围(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在Rt△ABC中,∠CAB=90°,AB=2,AC=
2
2
.一曲线E过点C,动点P在曲线E上运动,且保持|PA|+|PB|的值不变,直线l经过A与曲线E交于M,N两点.
(1)建立适当的直角坐标系,求曲线E的方程;
(2)设直线l的斜率为k,若∠MBN为钝角,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宁城县模拟)已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)经过点M(1,
3
2
)
,其离心率为
1
2
,O为坐标原点.
(Ⅰ)求椭圆C的方程;
(Ⅱ) 设直线l的斜率为k,且经过椭圆C的右焦点F,与C交于A,B两点,点P满足
OP
=
OA
+
OB
,试判断是否存在这样的实数k,使点P在椭圆C上,若存在,求出k的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l过x轴上的点M,l交椭圆
x2
8
+
y2
4
=1
于A,B两点,O是坐标原点.
(1)若M的坐标为(2,0),当OA⊥OB时,求直线l的方程;
(2)若M的坐标为(1,0),设直线l的斜率为k(k≠0),是否存直线l,使得l垂直平分椭圆的一条弦?如果存在,求k的取值范围;如果不存在,说明理由.

查看答案和解析>>

同步练习册答案