精英家教网 > 高中数学 > 题目详情

【题目】下列命题正确个数为(

1)若,当时,则上是单调递增函数;

2单调减区间为

3

-3

-2

-1

0

1

2

3

4

3

2

1

-2

-3

-4

上述表格中的函数是奇函数;

4)若上的偶函数,则都在图像上.

A.0B.1C.2D.3

【答案】C

【解析】

对于(1) :当,可得:, 根据增函数的定义可知(1)正确;

对于(2):单调减区间的减区间有两个,它们是,而不是;不正确.

对于(3):,不满足奇函数的定义,不正确.

对于(4): 的坐标显然满足,结合偶函数的定义可知点 的坐标都满足,所以点 都在 的图象上.

对于(1) :若,,可得:,根据增函数的定义可知(1)正确;

对于(2) :单调减区间为,不能写成并集形式,(2)错误;

对于(3):因为= , ,不满足,所以表格中的函数不是奇函数,所以不正确;

对于(4):显然图像上;

因为函数为偶函数,所以,所以也在图像上.;

因为函数为偶函数,所以,所以也在图像上.(4)正确.

故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,则关于函数有如下说法:

的图像关于轴对称;

②方程的解只有

③任取一个不为零的有理数对任意的恒成立;

④不存在三个点,,使得为等边三角形.

其中正确的个数是(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,已知,则( )

A. 等腰直角三角形 B. 等边三角形

C. 锐角非等边三角形 D. 钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知半圆分别为半圆轴的左、右交点,直线过点且与轴垂直,点在直线上,纵坐标为,若在半圆上存在点使,则的取值范围是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙、丁四位同学一起去向老师询问各自的分班情况,老师说:你们四人中有位分到班,位分到班,我现在给甲看乙、丙的班级,给乙看丙的班级,给丁看甲的班级.看后甲对大家说:我还是不知道我的班级,根据以上信息,则( )

A. 乙可以知道四人的班级 B. 丁可以知道四人的班级

C. 乙、丁可以知道对方的班级 D. 乙、丁可以知道自己的班级

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知斜率为k(k≠0)的直线 交椭圆 两点。
(1)记直线 的斜率分别为 ,当 时,证明:直线 过定点;
(2)若直线 过点 ,设 的面积比为 ,当 时,求 的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲
已知函数f(x)=log2(|x+1|+|x﹣2|﹣m).
(1)当m=7时,求函数f(x)的定义域;
(2)若关于x的不等式f(x)≥2的解集是R,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为2的正方形,侧面是等腰直角三角形,且,侧面⊥底面.

(1)若分别为棱的中点,求证:∥平面

(2)棱上是否存在一点,使二面角角,若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数的图象过点,对任意满足,且有最小值为

1)求的解析式;

2)求函数在区间[0,1]上的最小值,其中

3)在区间[1,3]上,的图象恒在函数的图象上方,试确定实数的范围.

查看答案和解析>>

同步练习册答案