精英家教网 > 高中数学 > 题目详情
19.设等差数列{an}的前n项和为Sn,其公差为-1,若S1,S2,S4成等比数列,则a1=(  )
A.2B.-2C.$\frac{1}{2}$D.$-\frac{1}{2}$

分析 运用等差数列的求和公式和等比数列的中项的性质,解方程可得首项.

解答 解:前n项和为Sn=na1-$\frac{1}{2}$n(n-1),
由S1,S2,S4成等比数列,可得S22=S1S4,即为(2a1-1)2=a1(4a1-6),
解得a1=-$\frac{1}{2}$,
故选D.

点评 本题考查等差数列的求和公式,同时考查等比数列的中项的性质,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知双曲线C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{4}$=1,直线l过原点,
(1)若直线l与C有两个不同的公共点,求实数k的取值范围;
(2)当k=$\frac{1}{2}$时,直线l截双曲线C的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=|x-l|+|x-3|.
(I)解不等式f(x)≤6;
(Ⅱ)若不等式f(x)≥ax-1对任意x∈R恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}为等比数列,a1=3,a4=81,若数列{bn}满足bn=(n+1)log3an,则{$\frac{1}{{b}_{n}}$}的前n项和Sn=$\frac{n}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知二次函数f(x)=x2+(2a-1)x+1-2a.
(1)若f(x)只有一个零点,求实数a的值;
(2)若f(x)在区间$(-1,0)及(0,\frac{1}{2})$内各有一个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在正方体ABCD-A1B1C1D1中,点E,F分别是上底面A1B1C1D1和侧面CDD1C1的中心.
(1)求cos∠EAF;
(2)求直线AE与平面CDD1C1所成角的正弦值;
(3)求直线AF与平面BDD1B1所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=max{|x+1|,|x-3|}的最小值(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.行列式$|{\begin{array}{l}a&b\\ c&d\end{array}}|$(a、b、c、d∈{-1,1,2})所有可能的值中,最小值为-6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若直线l与曲线y=x3相切于点P,且与直线y=3x+2平行,则点P的坐标为(1,1).

查看答案和解析>>

同步练习册答案