A. | $\sqrt{2}$f($\frac{π}{6}$)>f($\frac{π}{4}$) | B. | $\sqrt{3}$f($\frac{π}{6}$)>f($\frac{π}{3}$) | C. | $\sqrt{6}$f($\frac{π}{6}$)>2f($\frac{π}{4}$) | D. | $\sqrt{3}$f($\frac{π}{6}$)<f($\frac{π}{3}$) |
分析 构造函数g(x)=$\frac{f(x)}{sinx}$,求出g(x)的导数,得到函数g(x)的单调性,从而判断出函数值的大小即可.
解答 解:由f′(x)sinx>f(x)cosx,
则f′(x)sinx-f(x)cosx>0,
构造函数g(x)=$\frac{f(x)}{sinx}$,
则g′(x)=$\frac{f′(x)sinx-f(x)cosx}{s{in}^{2}x}$,
当x∈(0,$\frac{π}{2}$)时,g′(x)>0,
即函数g(x)在(0,$\frac{π}{2}$)上单调递增,
∴g($\frac{π}{6}$)<g($\frac{π}{3}$),
∴$\sqrt{3}$f($\frac{π}{6}$)<f($\frac{π}{3}$),
故选:D.
点评 本题考查了导数的应用,考查函数的单调性问题,构造函数g(x)=$\frac{f(x)}{sinx}$是解题的关键,本题是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 顶点 | B. | 焦点 | C. | 离心率 | D. | 长轴长 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com