【题目】在△ABC中,角A,B,C所对的边分别是a,b,c,且.
(Ⅰ)证明:;
(Ⅱ)若,求.
【答案】(Ⅰ)证明详见解析;(Ⅱ)4.
【解析】试题分析:(Ⅰ)将已知等式通分后利用两角和的正弦函数公式整理,利用正弦定理,即可证明.(Ⅱ)由余弦定理求出A的余弦函数值,利用(Ⅰ)的条件,求解B的正切函数值即可
试题解析:(1)根据正弦定理,设===k(k>0).
则a="ksin" A,b="ksin" B,c="ksin" C.
代入+=中,有+=,变形可得
sin Asin B="sin" Acos B+cos Asin B=sin(A+B).
在△ABC中,由A+B+C=π,有sin(A+B)=sin(π–C)="sin" C,
所以sin Asin B="sin" C.
(2)由已知,b2+c2–a2=bc,根据余弦定理,有cos A==.
所以sin A==.
由(Ⅰ),sin Asin B="sin" Acos B+cos Asin B,所以sin B=cos B+sin B,
故tan B==4.
科目:高中数学 来源: 题型:
【题目】从5名女同学和4名男同学中选出4人参加四场不同的演讲,分别按下列要求,各有多少种不同选法?(用数字作答)
(1)男、女同学各2名;
(2)男、女同学分别至少有1名;
(3)在(2)的前提下,男同学甲与女同学乙不能同时选出。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{an}中,定义:dn=an+2+an﹣2an+1(n≥1),a1=1.
(1)若dn=an , a2=2,求an;
(2)若a2=﹣2,dn≥1,求证此数列满足an≥﹣5(n∈N*);
(3)若|dn|=1,a2=1且数列{an}的周期为4,即an+4=an(n≥1),写出所有符合条件的{dn}.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设是异面直线,则以下四个命题:①存在分别经过直线和的两个互相垂直的平面;②存在分别经过直线和的两个平行平面;③经过直线有且只有一个平面垂直于直线;④经过直线有且只有一个平面平行于直线,其中正确的个数有( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】先阅读下列结论的证法,再解决后面的问题:
已知 ,求证: .
【证明】构造函数 ,则 ,
因为对一切 ,恒有 .
所以 ,从而得 .
(1)若 ,请写出上述结论的推广式;
(2)参考上述解法,对你推广的结论加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了调查喜欢旅游是否与性别有关,调查人员就“是否喜欢旅游”这个问题,在火车站分别随机调研了 名女性或 名男性,根据调研结果得到如图所示的等高条形图.
(1)完成下列 列联表:
喜欢旅游 | 不喜欢旅游 | 估计 | |
女性 | |||
男性 | |||
合计 |
(2)能否在犯错误概率不超过 的前提下认为“喜欢旅游与性别有关”.
附:
/td> |
参考公式:
,其中
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系 中,以 为极点, 轴的正半轴为极轴,建立极坐标系.曲线 的极坐标方程为 ,曲线 的参数方程为 ( 为参数), .
(Ⅰ)求曲线 的直角坐标方程,并判断该曲线是什么曲线?
(Ⅱ)设曲线 与曲线 的交点为 , , ,当 时,求 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3+3x2-9x .
(I)求f(x)的单调区间;
(Ⅱ)若函数f(x)在区间[-4,c]上的最小值为-5,求c的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com