精英家教网 > 高中数学 > 题目详情
15.下面各组函数中为相同函数的是(  )
A.$f(x)=\sqrt{{{({x-1})}^2}}\;,\;\;g(x)=x-1$B.$f(x)=\sqrt{{x^2}-1}\;,\;\;g(x)=\sqrt{x+1}•\sqrt{x-1}$
C.$f(x)=\sqrt{\frac{1-x}{x+2}}\;,\;\;g(x)=\frac{{\sqrt{1-x}}}{{\sqrt{x+2}}}$D.$f(x)={({\sqrt{x-1}})^2}\;,\;\;g(x)=\sqrt{{{({x-1})}^2}}$

分析 分析函数的定义域与解析式,即可得出结论.

解答 解:对于A,f(x)=|x-1|,与g(x)不是同一函数;
对于B,函数f(x)中x2-1≥0,g(x)中,x≥1,定义域不一样;
对于C,函数f(x)中$\frac{1-x}{x+2}$≥0,g(x)中,-2<x≤1,定义域一样;
对于D,定义域不一样,
故选C.

点评 本题考查函数的定义域与解析式,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\left\{\begin{array}{l}{lnx,x≥1}\\{1-\frac{x}{2},x<1}\end{array}\right.$,若F(x)=f[f(x)+1]+m有两个零点x1,x2,则x1+x2的取值范围是(  )
A.[4-2ln2,+∞)B.[1+$\sqrt{e}$,+∞)C.[4-2ln2,1+$\sqrt{e}$)D.(-∞,1+$\sqrt{e}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.直线$x+\sqrt{3}y+1=0$与直线$3x+\sqrt{3}y-1=0$的夹角的大小为30°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若cosα=-$\frac{3}{5}$,α∈(0,π),则tanα等于-$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=(x-2)0+$\frac{1}{{\sqrt{9-{x^2}}}}$的定义域为{x|-3<x<3且x≠2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在直角坐标系xOy中,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),b=1,左右两个焦点分别为F1,F2.过右焦点F2且与x轴垂直的直线与椭圆C相交M,N两点,且|MN|=1.
(1)求椭圆C的方程;
(Ⅱ) 设椭圆C的左顶点为A,下顶点为B,动点P满足$\overrightarrow{PA}•\overrightarrow{AB}=m-4$,(m∈R)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆C上.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若(2x-1)-2>(x+1)-2,则x的取值范围为0<x<2且x≠$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.深圳市居民用水收费规定如下:每月用量在22方以下(含22方)为2元/方,大于22方且小于30方(含30方)为3元/方,30方以上为4元/方,排污费均为0.5元/方.某居民某月缴水费83元(含排污费),则该居民这个月实际用水$30\frac{5}{9}$方.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设a,b∈R,则“a>b”是“a>|b|”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案