精英家教网 > 高中数学 > 题目详情

【题目】设函数.若方程有且只有两个不同的实根,则实数的取值范围为 ( )

A. B.

C. D.

【答案】A

【解析】

对该题应用分类讨论思想分以下三种情况:

①若无实根,即,则不合题意.

②若有两个相等的实数根,此时得:,无根,不合题意,故舍去.

③若有两个不相等的实数根,也即,设的实根为:,则:方程共有两个不等实根.进一步可知:方程有且仅有一个方程有两个不等实根.即:中一个方程有两不等实根另一个方程无实根.又由于,可得,利用换元法解不等式可得的取值范围。

解:函数

若方程有且只有两个不同的实根

①若无实根,即,则不合题意.

②若有两个相等的实数根,此时得:,无根,不合题意,故舍去.

③若有两个不相等的实数根,也即,设的实根为:,则:方程有两个不等实根.进一步可知:方程有且仅有一个方程有两个不等实根.

即:中一个方程有两不等实根另一个方程无实根.

又由于,可得,设,则

则不等式组转化为,解得

故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为梯形,平面分别是的中点.

)求证:平面

)若与平面所成的角为,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知分别为的外心,重心,.

1)求点的轨迹的方程;

2)是否存在过的直线交曲线两点且满足,若存在求出的方程,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】顾客请一位工艺师把两件玉石原料各制成一件工艺品,工艺师带一位徒弟完成这项任务,每件原料先由徒弟完成粗加工,再由工艺师进行精加工完成制作,两件工艺品都完成后交付顾客,两件原料每道工序所需时间(单位:工作日)如下:

则最短交货期为_______个工作日.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年高考刚过,为了解考生对全国2卷数学试卷难度的评价,随机抽取了某学校50名男考生与50名女考生,得到下面的列联表:

非常困难

一般

男考生

20

30

女考生

40

10

(1)分别估计该学校男考生、女考生觉得全国2卷数学试卷非常困难的概率;

(2)从该学校随机抽取3名男考生,2名女考生,求恰有4名考生觉得全国2卷数学试卷非常困难的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类,B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).

1A类工人中和B类工人中各抽查多少工人?

2)从A类工人中的抽查结果和从B类工人中的抽查结果分别如下表1和表2.

表一

生产能力分组

[100,110)

[110,120)

[120,130)

[130,140)

[140,150)

人数

4

8

5

3

表二

生产能力分组

[110,120)

[120,130)

[130,140)

[140,150)

人数

6

36

18

①先确定再补全下列频率分布直方图(用阴影部分表示).

②就生产能力而言,类工人中个体间的差异程度与类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)

③分别估计类工人生产能力的平均数和中位数(求平均数时同一组中的数据用该组区间的中点值作代表).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的准线为上一动点,过点作抛物线的切线,切点分别为.

(I)求证:是直角三角形;

(II)轴上是否存在一定点,使三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图是国家统计局今年411日发布的20183月到20193月全国居民消费价格的涨跌幅情况折线图.(注:20192月与20182月相比较称同比,20192月与20191月相比较称环比),根据该折线图,下列结论错误的是

A. 20183月至20193月全国居民消费价格同比均上涨

B. 20183月至20193月全国居民消费价格环比有涨有跌

C. 20193月全国居民消费价格同比涨幅最大

D. 20193月全国居民消费价格环比变化最快

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系,曲线的参数方程为(其中为参数)曲线的普通方程为,以坐标原点为极点,以轴正半轴为极轴建立极坐标系.

1)求曲线和曲线的极坐标方程;

2)射线:依次与曲线和曲线交于两点,射线:依次与曲线和曲线交于两点,求的最大值.

查看答案和解析>>

同步练习册答案