【题目】设函数.若方程有且只有两个不同的实根,则实数的取值范围为 ( )
A. B.
C. D.
【答案】A
【解析】
对该题应用分类讨论思想分以下三种情况:
①若无实根,即,则不合题意.
②若有两个相等的实数根,此时由得:,无根,不合题意,故舍去.
③若有两个不相等的实数根,也即,设的实根为:和,则:方程或共有两个不等实根.进一步可知:方程和有且仅有一个方程有两个不等实根.即:和中一个方程有两不等实根另一个方程无实根.又由于,可得,,利用换元法解不等式可得的取值范围。
解:函数
若方程有且只有两个不同的实根
①若无实根,即,则不合题意.
②若有两个相等的实数根,此时由得:,无根,不合题意,故舍去.
③若有两个不相等的实数根,也即,设的实根为:和,则:方程或有两个不等实根.进一步可知:方程和有且仅有一个方程有两个不等实根.
即:和中一个方程有两不等实根另一个方程无实根.
又由于,可得,设,则
则不等式组转化为,解得,
,
即。
故选:A.
科目:高中数学 来源: 题型:
【题目】如图,已知、,、分别为的外心,重心,.
(1)求点的轨迹的方程;
(2)是否存在过的直线交曲线于,两点且满足,若存在求出的方程,若不存在请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】顾客请一位工艺师把、两件玉石原料各制成一件工艺品,工艺师带一位徒弟完成这项任务,每件原料先由徒弟完成粗加工,再由工艺师进行精加工完成制作,两件工艺品都完成后交付顾客,两件原料每道工序所需时间(单位:工作日)如下:
则最短交货期为_______个工作日.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年高考刚过,为了解考生对全国2卷数学试卷难度的评价,随机抽取了某学校50名男考生与50名女考生,得到下面的列联表:
非常困难 | 一般 | |
男考生 | 20 | 30 |
女考生 | 40 | 10 |
(1)分别估计该学校男考生、女考生觉得全国2卷数学试卷非常困难的概率;
(2)从该学校随机抽取3名男考生,2名女考生,求恰有4名考生觉得全国2卷数学试卷非常困难的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类,B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).
(1)A类工人中和B类工人中各抽查多少工人?
(2)从A类工人中的抽查结果和从B类工人中的抽查结果分别如下表1和表2.
表一
生产能力分组 | [100,110) | [110,120) | [120,130) | [130,140) | [140,150) |
人数 | 4 | 8 | 5 | 3 |
表二
生产能力分组 | [110,120) | [120,130) | [130,140) | [140,150) |
人数 | 6 | 36 | 18 |
①先确定再补全下列频率分布直方图(用阴影部分表示).
②就生产能力而言,类工人中个体间的差异程度与类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)
③分别估计类工人生产能力的平均数和中位数(求平均数时同一组中的数据用该组区间的中点值作代表).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下图是国家统计局今年4月11日发布的2018年3月到2019年3月全国居民消费价格的涨跌幅情况折线图.(注:2019年2月与2018年2月相比较称同比,2019年2月与2019年1月相比较称环比),根据该折线图,下列结论错误的是
A. 2018年3月至2019年3月全国居民消费价格同比均上涨
B. 2018年3月至2019年3月全国居民消费价格环比有涨有跌
C. 2019年3月全国居民消费价格同比涨幅最大
D. 2019年3月全国居民消费价格环比变化最快
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(其中为参数)曲线的普通方程为,以坐标原点为极点,以轴正半轴为极轴建立极坐标系.
(1)求曲线和曲线的极坐标方程;
(2)射线:依次与曲线和曲线交于、两点,射线:依次与曲线和曲线交于、两点,求的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com