9¸öÕýÊýÅųÉ3ÐÐ3ÁÐÈçÏ£º
a11  a12  a13
a21  a22  a23
a31  a32  a33
ÆäÖÐÿһÐеÄÊý³ÉµÈ²îÊýÁУ¬Ã¿Ò»ÁеÄÊý³ÉµÈ±ÈÊýÁУ¬²¢ÇÒËùÓй«±ÈÏàµÈ£¬ÒÑÖªa12=1£¬a23=
3
4
£¬a32=
1
4
£®
£¨¢ñ£©a11£¬¼°µÚÒ»ÐеÄÊýËù³ÉµÈ²îÊýÁеĹ«²îd1£¬Ã¿Ò»ÁеÄÊýËù³ÉµÈ±ÈÊýÁеĹ«±Èq£»
£¨¢ò£©Èô±£³ÖÕâ9¸öÕýÊý²»¶¯£¬ÈÔʹÿһÐеÄÊý³ÉµÈ²îÊýÁУ¬Ã¿Ò»ÁеÄÊý³ÉµÈ±ÈÊýÁУ¬²¹×ö³ÉÒ»¸önÐÐnÁеÄÊý±í£®
a11  a12  a13 ¡­a1n
a21  a22  a23 ¡­a2n
a31  a32  a33 ¡­a3n
¡­
an1  an2  an3 ¡­ann
¼ÇSn=a11+a22+¡­+ann£¬ÇóSn£»
£¨¢ó£©ÈôSnΪ£¨¢ò£©ÖÐËùÊö£¬Çó
lim
n¡ú¡Þ
(Sn+
n+1
2n
)
µÄÖµ£®
·ÖÎö£º£¨¢ñ£©ÓÉÌâÉ裬µÃ
a12=a11+d1=1
a23=(a11+2d1)•q=
3
4
a32=(a11+d1)•q2=
1
4
aij£¾0(i£¬j=1£¬2£¬3).
£¬½â·½³Ì×éÇóµÃa11¡¢¼°¹«²îd1¡¢¹«±ÈqµÄÖµ£®
£¨¢ò£©¸ù¾Ý akk=a1k•qk-1=[a11+£¨k-1£©d1]•qk-1 =k•£¨
1
2
£©k?£¬¿ÉµÃSn =
1
2
+2•£¨
1
2
£©2+3•£¨
1
2
£©3+¡­+n•£¨
1
2
£©n£¬¢ÙÔÙÓôíλÏà¼õ·¨ÇóµÃSnµÄÖµ£®
£¨¢ó£©¸ù¾Ý
lim
n¡ú¡Þ
(Sn+
n+1
2n
)=
lim
n¡ú¡Þ
(2-
n+2
2n
+
n+1
2n
)=
lim
n¡ú¡Þ
(2-
1
2n
)
£¬ÔÙÀûÓÃÊýÁм«ÏÞµÄÔËËã·¨ÔòÇóµÃ½á¹û£®
½â´ð£º½â£º£¨¢ñ£©ÓÉÌâÉ裬µÃ
a12=a11+d1=1
a23=(a11+2d1)•q=
3
4
a32=(a11+d1)•q2=
1
4
aij£¾0(i£¬j=1£¬2£¬3).
£¬¡à
a11=
1
2
d1=
1
2
q=
1
2
.
£®£¨5·Ö£©
£¨¢ò£©akk=a1k•qk-1=[a11+£¨k-1£©d1]•qk-1=[
1
2
+(k-1)•
1
2
]•£¨
1
2
£©k-1=k•£¨
1
2
£©k?£¬
¡àSn=a11+a22+a33+¡­+ann =
1
2
+2•£¨
1
2
£©2+3•£¨
1
2
£©3+¡­+n•£¨
1
2
£©n£¬¢Ù
¡à
1
2
Sn=£¨
1
2
£©2+2•£¨
1
2
£©3+3•£¨
1
2
£©4+¡­+£¨n-1£©•£¨
1
2
£©n+n•£¨
1
2
£©n+1£® ¢Ú
¢Ù-¢ÚµÃ£¬
1
2
Sn=
1
2
+£¨
1
2
£©2+£¨
1
2
£©3+¡­+£¨
1
2
£©n-n•£¨
1
2
£©n+1 =
1
2
[1-(
1
2
)
n
]
1-
1
2
-n•(
1
2
)n+1
£¬
¡àSn=2-
n+2
2n
£®£¨10·Ö£©
£¨¢ó£©
lim
n¡ú¡Þ
(Sn+
n+1
2n
)=
lim
n¡ú¡Þ
(2-
n+2
2n
+
n+1
2n
)=
lim
n¡ú¡Þ
(2-
1
2n
)=2
£®£¨14·Ö£©
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éµÈ²îÊýÁС¢µÈ±ÈÊýÁеĶ¨ÒåºÍÐÔÖÊ¡¢Ç°nÏîºÍ¹«Ê½µÄÓ¦Óã¬ÊýÁм«ÏÞµÄÔËËã·¨Ôò£¬ÓôíλÏà¼õ·¨½øÐÐÊýÁÐÇóºÍ£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

9¸öÕýÊýÅųÉ3ÐÐ3ÁÐÈçÏ£º
a11a12a13
a21a22a23
a31a32a33
ÆäÖÐÿһÐеÄÊý³ÉµÈ²îÊýÁУ¬Ã¿Ò»ÁеÄÊý³ÉµÈ±ÈÊýÁУ¬²¢ÇÒËùÓй«±ÈÏàµÈ£®ÒÑÖªa12=1£¬a23=
3
4
£¬a32=
1
4

£¨1£©Çóa11£¬µÚÒ»ÐÐÊýÁеĹ«²îd1£¬¼°¸÷ÁÐÊýÁеĹ«±Èq£»
£¨2£©Èô±£³ÖÕâ9¸öÕýÊýµÄλÖò»¶¯£¬°´ÕÕ£¨1£©ÖÐËùÇóµÄ¹æÂÉÅŲ¼£¬²¹×ö³ÉÒ»¸ö
nÐÐnÁеÄÊý±í£®
a11 a12 a13¡­£¬a1n
a21 a22 a23¡­£¬a2n
a31 a32 a33¡­£¬a3n
¡­
an1 an2 an3¡­£¬ann
ÊÔÇóa11+a22+¡­+annµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º½Ì²ÄÍêÈ«½â¶Á¡¡¸ßÖÐÊýѧ¡¡±ØÐÞ5(È˽ÌB°æ¿Î±ê°æ) È˽ÌB°æ¿Î±ê°æ ÌâÐÍ£º044

9¸öÕýÊýÅųÉ3ÐÐ3ÁÐÈçÏ£º

a11¡¡¡¡a12¡¡¡¡a13

a21¡¡¡¡a22¡¡¡¡a23

a31¡¡¡¡a32¡¡¡¡a33

ÆäÖÐÿһÐеÄÊý³ÉµÈ²îÊýÁУ¬Ã¿Ò»ÁеÄÊý³ÉµÈ±ÈÊýÁУ¬²¢ÇÒËùÓй«±ÈÏàµÈ£®ÒÑÖªa12£½1£¬a23£½£¬a32£½£®

(1)Çóa11£¬µÚÒ»ÐÐÊýÁеĹ«²îd1£¬¼°¸÷ÁÐÊýÁеĹ«±Èq£»

(2)Èô±£³ÖÕâ9¸öÕýÊýµÄλÖò»¶¯£¬°´ÕÕ(1)ÖÐËùÇóµÄ¹æÂÉÅŲ¼£¬²¹×ö³ÉÒ»¸önÐÐnÁÐÊý±íÈçÏ£º

a11¡¡a12¡¡a13¡¡¡­¡¡a1n

a21¡¡a22¡¡a23¡¡¡­¡¡a2n

a31¡¡a32¡¡a33¡¡¡­¡¡a3n

¡­¡¡¡­¡¡¡­¡¡¡­¡¡¡­

an1¡¡an2¡¡an3¡¡¡­¡¡ann

ÊÔÇóa11£«a22£«¡­£«annµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2007-2008ѧÄêºþ±±Ê¡Î人ÊлªÖÐʦ´óÒ»¸½ÖиßÈý£¨ÉÏ£©ÆÚÖÐÊýѧÊÔ¾í£¨Àí¿Æ£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

9¸öÕýÊýÅųÉ3ÐÐ3ÁÐÈçÏ£º
a11a12a13
a21a22a23
a31a32a33
ÆäÖÐÿһÐеÄÊý³ÉµÈ²îÊýÁУ¬Ã¿Ò»ÁеÄÊý³ÉµÈ±ÈÊýÁУ¬²¢ÇÒËùÓй«±ÈÏàµÈ£®ÒÑÖªa12=1£¬£¬
£¨1£©Çóa11£¬µÚÒ»ÐÐÊýÁеĹ«²îd1£¬¼°¸÷ÁÐÊýÁеĹ«±Èq£»
£¨2£©Èô±£³ÖÕâ9¸öÕýÊýµÄλÖò»¶¯£¬°´ÕÕ£¨1£©ÖÐËùÇóµÄ¹æÂÉÅŲ¼£¬²¹×ö³ÉÒ»¸ö
nÐÐnÁеÄÊý±í£®
a11 a12 a13¡­£¬a1n
a21 a22 a23¡­£¬a2n
a31 a32 a33¡­£¬a3n
¡­
an1 an2 an3¡­£¬ann
ÊÔÇóa11+a22+¡­+annµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸