【题目】【2016高考山东理数】平面直角坐标系中,椭圆C: 的离心率是,抛物线E:的焦点F是C的一个顶点.
(I)求椭圆C的方程;
(II)设P是E上的动点,且位于第一象限,E在点P处的切线与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.
(i)求证:点M在定直线上;
(ii)直线与y轴交于点G,记的面积为,的面积为,求 的最大值及取得最大值时点P的坐标.
【答案】(Ⅰ);(Ⅱ)(i)见解析;(ii)的最大值为,此时点的坐标为
【解析】
试题分析:(Ⅰ)根据椭圆的离心率和焦点求方程;(Ⅱ)(i)由点P的坐标和斜率设出直线l的方程和抛物线联立,进而判断点M在定直线上;(ii)分别列出,面积的表达式,根据二次函数求最值和此时点P的坐标.
试题解析:
(Ⅰ)由题意知,可得:.
因为抛物线的焦点为,所以,
所以椭圆C的方程为.
(Ⅱ)(i)设,由可得,
所以直线的斜率为,因此直线的方程为,即.
设,联立方程
得,
由,得且,
因此,
将其代入得,
因为,所以直线方程为.
联立方程,得点的纵坐标为,
即点在定直线上.
(ii)由(i)知直线方程为,
令得,所以,
又,
所以,
,所以,
令,则,
当,即时,取得最大值,此时,满足,
所以点的坐标为,因此的最大值为,此时点的坐标为.
科目:高中数学 来源: 题型:
【题目】已知直线l的方程为3x+4y﹣12=0,求直线l'的方程,使得:
(1)l'与l平行,且过点(﹣1,3);
(2)l'与l垂直,且l'与两轴围成的三角形面积为4.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}为等比数列,数列{bn}满足bn=na1+(n﹣1)a2+…+2an﹣1+an , n∈N* , 已知b1=m, ,其中m≠0.
(1)求数列{an}的首项和公比;
(2)当m=1时,求bn;
(3)设Sn为数列{an}的前n项和,若对于任意的正整数n,都有Sn∈[1,3],求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【河北省衡水中学2017届高三上学期五调】已知椭圆,圆的圆心在椭圆上,点到椭圆的右焦点的距离为.
(1)求椭圆的方程;
(2)过点作互相垂直的两条直线,且交椭圆于两点,直线交圆于两点,且为的中点,求面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱锥中,底面是边长为2的正方形,侧面为正三角形,且面面, 分别为棱的中点.
(1)求证: 平面;
(2)(文科)求三棱锥的体积;
(理科)求二面角的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ,g(x)=x2+2mx+
(1)用定义法证明f(x)在R上是增函数;
(2)求出所有满足不等式f(2a﹣a2)+f(3)>0的实数a构成的集合;
(3)对任意的实数x1∈[﹣1,1],都存在一个实数x2∈[﹣1,1],使得f(x1)=g(x2),求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com