精英家教网 > 高中数学 > 题目详情
7.函数y=cos2x+2sinx在区间[-$\frac{π}{6}$,θ]上的最小值为-$\frac{1}{4}$,则θ的取值范围是[$-\frac{π}{6},\frac{7π}{6}$].

分析 利用平方关系化为关于sinx的一元二次方程,配方后由最小值为-$\frac{1}{4}$,可得sinx=-$\frac{1}{2}$,再结合x∈[-$\frac{π}{6}$,θ]求得θ的范围.

解答 解:y=cos2x+2sinx=-sin2x+2sinx+1=-(sinx-1)2+2.
∵函数y=cos2x+2sinx在区间[-$\frac{π}{6}$,θ]上的最小值为-$\frac{1}{4}$,
∴-(sinx-1)2的最小值为$-\frac{9}{4}$,
∴(sinx-1)2的最大值为$\frac{9}{4}$,则sinx=-$\frac{1}{2}$,
∵x∈[-$\frac{π}{6}$,θ],
∴θ∈[$-\frac{π}{6},\frac{7π}{6}$].
故答案为:[$-\frac{π}{6},\frac{7π}{6}$].

点评 本题考查三角函数中的恒等变换应用,训练了利用配方法求函数的最值,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.计算:$\lim_{n→∞}\frac{{{n^2}-3}}{{2{n^2}+n}}$=0.5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若复数z满足$\frac{z\;}{1+i}={i^{2015}}+{i^{2016}}$(i为虚数单位),则复数z=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在报名的5名男生和3名女生中,选取5人参加数学竞赛,要求男、女生都有,则不同的选取方式的种数为55.(结果用数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.要使$\frac{1}{2}$sinθ+$\frac{\sqrt{3}}{2}$cosθ=$\frac{m-6}{2-m}$有意义,则实数m的取值范围是(  )
A.(4,+∞)B.[4,+∞)C.[8,+∞)D.(8,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设f(x)=6cos2x-$\sqrt{3}$sin2x,求f(x)的最大值及最小正周期.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知f(x)是定义在R上的奇函数,当0≤x≤1时,f(x)=x2,当x>0时,f(x+1)=f(x)+f(1),若直线y=kx与函数y=f(x)的图象恰有11个不同的公共点,则实数k的取值范围为($2\sqrt{6}-4$,$4\sqrt{3}-6$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.使奇函数$f(x)=\sqrt{3}sin(2x+θ)+cos(2x+θ)$在$[0,\frac{π}{4}]$上为增函数的θ值为(  )
A.$-\frac{π}{3}$B.$-\frac{π}{6}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.抛物线x2=2py(p>0)的焦点F,其准线与双曲线$\frac{x^2}{3}-\frac{y^2}{3}=1$相交于A,B两点,若△ABC是等边三角形,则p等于(  )
A.6B.8C.4D.2

查看答案和解析>>

同步练习册答案