【题目】已知函数f(x)=4sin2( + )sinx+(cosx+sinx)(cosx﹣sinx)﹣1.
(1)化简f(x);
(2)常数ω>0,若函数y=f(ωx)在区间 上是增函数,求ω的取值范围;
(3)若函数g(x)= 在 的最大值为2,求实数a的值.
【答案】
(1)解:f(x)=2[1﹣cos( +x)]sinx+cos2x﹣sin2x﹣1=(2+2sinx)sinx+1﹣2sin2x﹣1=2sinx
(2)解:∵f(ωx)=2sinωx,由 ≤ωx≤ ,解得﹣ + ≤x≤ + ,
∴f(ωx)的递增区间为[﹣ + , + ],k∈Z.∵f(ωx)在[﹣ , ]上是增函数,
∴当k=0时,有 ,∴ ,解得 ,
∴ω的取值范围是(0, ]
(3)解:g(x)=sin2x+asinx﹣acosx﹣ a﹣1,令sinx﹣cosx=t,则sin2x=1﹣t2,
∴y=1﹣t2+at﹣ a﹣1=﹣(t﹣ )2+ ﹣ ,∵t=sinx﹣cosx= sin(x﹣ ),
∵x∈[﹣ , ],∴x﹣ ∈[﹣ , ],∴ .
① 当 <﹣ ,即a<﹣2 时,ymax=﹣(- ﹣ )2+ ﹣ =﹣ a﹣ ﹣2.
令﹣ a﹣ ﹣2=2,解得a=﹣ (舍).
②当﹣ ≤ ≤1,即﹣2 ≤a≤2时,ymax= ﹣ ,令 ,解得a=﹣2或a=4(舍).
③当 ,即a>2时,在t=1处 ,由 得a=6.
因此,a=﹣2或a=6
【解析】(1)使用降次公式和诱导公式化简4sin2( + ),使用平方差公式和二倍角公式化简(cosx+sinx)(cosx﹣sinx);(2)求出f(ωx)的包含0的增区间U,令[﹣ , ]U,列出不等式组解出ω;(3)求出g(x)解析式,判断g(x)的最大值,列方程解出a.
科目:高中数学 来源: 题型:
【题目】在实数集R中定义一种运算“⊙”,具有性质:①对任意a、b∈R,a⊙b=b⊙a;②a⊙0=a;③对任意a、b∈R,(a⊙b)⊙c=(ab)⊙c+(a⊙c)+(b⊙c)﹣2c,则函数f(x)=x⊙ 的最小值是( )
A.2
B.3
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2cosxsin(x+ )﹣ sin2x+sinxcosx.
(1)当x∈[0, ]时,求f(x)的值域;
(2)用五点法在图中作出y=f(x)在闭区间[﹣ , ]上的简图;
(3)说明f(x)的图象可由y=sinx的图象经过怎样的变化得到?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某正弦交流电的电压v(单位V)随时间t(单位:s)变化的函数关系是v=120 sin(100πt﹣ ),t∈[0,+∞).
(1)求该正弦交流电电压v的周期、频率、振幅;
(2)若加在霓虹灯管两端电压大于84V时灯管才发光,求在半个周期内霓虹灯管点亮的时间?( 取 ≈1.4)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了促进学生的全面发展,郑州市某中学重视学生社团文化建设,现用分层抽样的方法从“话剧社”,“创客社”,“演讲社”三个金牌社团中抽取6人组成社团管理小组,有关数据见表(单位:人):
社团名称 | 成员人数 | 抽取人数 |
话剧社 | 50 | a |
创客社 | 150 | b |
演讲社 | 100 | c |
(1)求a,b,c的值;
(2)若从“话剧社”,“创客社”,“演讲社”已抽取的6人中任意抽取2人担任管理小组组长,求这2人来自不同社团的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,两圆内切于点T,大圆的弦AB切小圆于点C.TA,TB与小圆分别相交于点E,F.FE的延长线交两圆的公切线TP于点P.
求证:(1) =;
(2)AC·PF=BC·PT.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为.现有10件产品,其中6件是一等品,4件是二等品.
(1)随机选取1件产品,求能够通过检测的概率;
(2)随机选取3件产品,其中一等品的件数记为,求的分布列及数学期望..
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com